
CSEE W4840 Embedded System Design Lab 2

Stephen A. Edwards

Due February 12, 2004

Abstract

Use your newfound C programming skills to write a program
that displays “Hello World!” on the video display using the sim-
ple framebuffer provided for you.

1 Introduction

One of the niftier peripherals on the XSB–300E board is the
THS8133B video DAC. This is a triple 10-bit DAC that can op-
erate as fast as 80 MHz and is connected directly to the FPGA
and a VGA connector. As such, it is perfectly suited to driving
one of the flat-panel displays in the lab.

We have designed a video frame buffer that uses one byte per
pixel. This is actually fairly tricky. It uses the onboard SRAM
to store the frame, and a memory interface arbitrates between
processor access to the memory and video access (video access
gets priority). For this lab, though, you can simply ignore all of
this and treat the frame buffer as a section of memory that just
happens to be displayed on a monitor.

2 Hello Video

We have provided a simple canned project that exercises the
video display. Make sure it compiles, downloads, runs, and dis-
plays video before tackling the rest of this lab.

1. Create a directory called, say, lab2 and cd into it.

2. Unpack the project from my home directory:

$ tar zxvf ˜sedwards/4840/lab2.tar.gz

3. Invoke make download. After a while, this will gen-
erate and download a .bit file that runs a program
(c_source_files/hello_video.c) that clears the
screen, draws a red border, a circle, square, triangle, and
some lines.

3 The Framebuffer

The 640 × 480 framebuffer uses one byte per pixel. The base
address is 0x00800000 and is arranged as a sequence of rows
in memory, i.e., the address of a pixel at coordinates (x,y) is
0x00800000+ x+640y. The bits in each byte represent bright-
ness levels as shown in Figure 1.

7 0
r2 r1 r0 g2 g1 g0 b1 b0

Figure 1: The layout of bits in each byte of the framebuffer.

4 The Assignment

Write a program to display “Hello World!” on the video display.
Write it as a character-printing function called repeatedly by

the main function; you will need such a character generator for
the next lab. (You may want to look at the next lab to get a hint
of where you are going to save you time.)

Memory is at a premium: encode your font as a bitmap, i.e.,
by using one byte for each row of each character. Creating a font
is tedious: you only need enough for “Hello World” in this lab,
but you’ll need the full alphabet for the next lab, so there’s no
harm in starting early. An 8 × 8 font is fine. Feel free to locate
an existing font and adapt it for your program. If you do this,
document where you got the font. Do not copy it from another
group, however.

Make your character printing function take three arguments:
the character to print, the row at which to display it, and the
column.

Show your working graphical “Hello World!” to a TA, have
him sign a printout of your solution (i.e., the C program includ-
ing the font data), and hand that it.

Again, shorter, elegant, readable solutions will be scored
higher than those that merely work.


