

CSEE4840: Embedded Systems
Design Document

Stereo Depth Extraction (SDE)

March 31, 2004

Department of Electrical Engineering
School of Engineering and Applied Science

Columbia University

Team Members:
Ang Cui (ac2024)
Jeng-Ming Hwang (jh2026)
Yen Yen Ooi (yo2006)
Kashif Siddiqui (kms2010)
Ting-Hsiang Wu (tsw2008)

 2

Table of Contents

Introduction ……………………………………………. 3

Purpose and Scope of Document

 Design Overview

Architecture Design ……………………………………. 4

 Required Equipment

 Explanation of Alias Render

System Architecture …………………………………… 5

 Block Diagram ………………………………………… 6

Software Architecture …………………………………. 7

Pseudo code for major components
 Light Scanning
 3D extraction

 3

Introduction

Purpose and Scope of Document

Our project will utilize an ordinary video camera to extract 3D coordinates from a single
light source in a dark background. Using the formulas of stereo-depth extraction and a
setup of mirrors augmented to the video camera, we will track a light source, and in real-
time output a stream of 3D coordinates into either the onboard CF card, or through
MINICOM.

Possible Applications: We can make use of the stereo-depth extractor to construct an
alarm system that can detector an object that is within a certain radius from our device.
This can be used in security systems or even in defense departments.

Design Overview

We will extract the image of a point of light from a digital video camera. We will process
the video signal with the onboard Philips video decoder chip (SAA7114H) and store it in
a video buffer (SRAM). We then proceed to locate the position of the light source by
scanning through the video buffer and extract the 2D coordinates of the light source from
each of the two sections of the video buffer. By using an optimized depth extraction
formula coded in C, we will compute a 3D coordinate of the light source. The collected
data can then be exported to any 3D modeling program, or our own real-time
visualization application. As an extra feature, we will experiment with tracking multiple
light sources.

 4

Architecture Design

Required Equipment

§ Video Camera

- with S-Video NTSC output
§ Periscope apparatus (self-constructed)
§ Camera tripod
§ Video Capture card

- to import test data into our own PC to ensure that our video calculations are
accurate by using points that we manually find using the pixel locator of a
graphics program

Explanation of Alias render

Please refer to attachment

This rendering demonstrates the process by which stereo input will be taken in. The video
camera is mounted on a regular commercial tripod. Attached to the lens of the camera is a
self-constructed periscope. The periscope consists of 2 pairs of mirrors mounted on a 45
degree angle to simulate a stereo input. The periscope itself is mounted via braces that
attach to the tripod. This setup enables a full range of motion for the light source, thereby
making our experiment more realistic.

 5

System Architecture

Refer to Block Diagram on page 6

1. Philips S447114H decoder

This is the decoder that is built into our Xilinx board. It will handle the S-video input into
the board from the Digital 8 camcorder. The input signal will be in NTSC at a resolution
of (427 x 242).

2. Video Buffer in black/white (427 x 242 x 4)

The Video Buffer that we plan on using will be coded in hardware to enable fast access to
the memory locations. We decided to go with black and white to cut down the amount of
processing and minimize the input bandwidth. The SRAM is suitable for our purpose.

3. VHDL Light Recognizer

We decided to code the Light Recognizer in VHDL to enable fast computation of the
presence of light.

4. Tangent Function Lookup Table (91 x 10 x 10)

The Tangent Function lookup table will be used to minimize the number of floating point
computations done in our algorithm. This is an important consideration because it will
enable the possibility of real time modeling.

We plan on populating the 900 lines of this table by writing a program that will calculate
the tangent values from 0 to 90 degrees at 0.1 degree intervals. These values will then be
stored in the lookup table. Intermediate values will be interpolated using the closest 0.1
degree values. A weighting mechanism might be employed to ensure that our estimated
tangent values is a feasible value. The SDRAM will be used to store the trigonometric
values.

 6

Software Architecture

Pseudo code for major components
§ Light Scanning

1) Search for light
 Input: None
 Output: 1 x 2D coordinate

 for(w) {
 for{h) {
 if(has_light_around_point) {
 return coordinate
 }
 }
 }

 2) Track light

 Input: 1 x 2D coordinate for last known light position.
 Output: 1 x 2D coordinate for current light position.

 x_old, y_old = 2D coordinate of known.

 from x_old - scan_radius to x_old + scan_radius
 from y_old - scan_radius to y_old + scan_radius

 if(has light around current position)
 return current position

 3) Save light coordinate

 Input: 2 x 2D coordinate
 Output: None

 Write_Data(cord1, loc1)
 Write_Data(cord2, loc2)

§ 3D extraction

 Input: 2 x 2D Coordinate
 Output: 1 x 3D Coordinate

 cord1 = Read_Data(loc1);
 cord2 = Read_Data(loc2);

 depth = k / tan(theta1) + tan(theta2);

 return 3D coordinate

	sde
	sde2

