
M.A.S.H. Design Document

William Dang, Chia-Hung Lee, Stephen Lee, Oleg Mironov, and Zijian Zhou

April 3, 2004

1 Introduction

For our Embedded Systems Final Design Project, we are implementing a basic karaoke machine. Audio files
in the form of WAVs will be played from the CompactFlash while simultaneously displaying the lyrics of the
song on the screen.

2 Design Approach

Our initial step is to first implement the CompactFlash which will store the audio and lyrics. Once we can
read specific blocks off the CompactFlash, we need to be able to understand the FAT16 file system to read
the audio and lyrics files properly. Next, we intend to implement the SDRAM memory system to provide a
way to buffer data from the CF to the SDRAM. Timing will be especially critical. With these components
in place, we will then interface with the audio codec. We now need to properly share the extracted audio
data between the CompactFlash, the memory buffer, and ultimately the audio codec. Once the basic parts
work, we can implement the actual synchronized audio and display of lyrics.

3 CompactFlash Interface

3.1 Introduction

The CompactFlash technology is an open standard. It provides a high capacity data storage and I/O
functionality. Since our goal is to build a karaoke machine, we will need some space to store all the songs
and the text for song lyrics. The CompactFlash standard provides us a relatively inexpensive and simple
way to accomplish our goal.

3.2 Access Modes

The CompactFlash standard provides three access modes: Memory Mode, I/O Mode, and True IDE Mode.
The True IDE mode works exactly like the standard IDE interface. I/O mode is often used for non-storage
type devices such as GPS and digital cameras. The Memory Mode method treats the CompactFlash card as
a single memory buffer. Since our karaoke machine will necessitate the implementation of many individual
components, it will also depend heavily on RAM. The Memory Mode of the CompactFlash works similar to
RAM access. Thus, we plan to use the Memory Mode in order to shorten the development time.

1

Figure 1: Overall Implementation of CompactFlash

3.3 Design of CompactFlash

The main part of the CompactFlash is the Control Logic. We plan on using VHDL. First, we have to
understand the timing diagram in the following section and follow the diagram to control the CompactFlash
card. Also, we should build some auxiliary components. One of them, the Card Information Structure
ROM, will provide the CompactFlash Control Logic with information about the CompactFlash card. For
example, the CompactFlash Control Logic may require data from the CompactFlash card; it will use the
Card Information Structure ROM to retrieve the real meaning of the data. We will also need an Attribute
Memory which will store information about the CompactFlash card configuration.

In order to control the CompactFlash Control Logic, we should monitor the CompactFlash Control Logic
using some memory buffer where the FAT16 file system will reside and communicate with the CompactFlash
Control Logic. In summary, the CompactFlash Control Logic will deal with all the operations related to
reading, controlling, and storing data in the memory which will be shared by other parts of our design.

3.4 CompactFlash Pins in Memory Mode

The following two tables detail the pins of the CompactFlash interface.

2

Signal Name Dir Pin Description
A10 - A0 I 8, 10, 11, 12, 14,

15, 16, 17, 18,
19, 20

These address lines along with the -REG signal are used to
select the following: The I/O port address registers within
the CompactFlash Storage Card or CF+ Card, the mem-
ory mapped port address registers within the Compact-
Flash Storage Card or CF+ Card, a byte in the card’s in-
formation structure and its configuration control and sta-
tus registers.

BVD1 I/O 46 This signal is asserted high, as BVD1 is not supported.
BVD2 I/O 45 This signal is asserted high, as BVD2 is not supported.
-CD1, -CD2 O 26, 25 These Card Detect pins are connected to ground on the

CompactFlash Storage Card or CF+ Card. They are used
by the host to determine that the CompactFlash Storage
Card or CF+ Card is fully inserted into its socket.

-CE1, -CE2 I 7, 32 These input signals are used both to select the card and to
indicate to the card whether a byte or a word operation is
being performed. -CE2 always accesses the odd byte of the
word.-CE1 accesses the even byte or the Odd byte of the
word depending on A0 and -CE2. A multiplexing scheme
based on A0, -CE1, -CE2 allows 8 bit hosts to access all
data on D0-D7

-CSEL I 39 This signal is not used for this mode, but should be con-
nected by the host to PC Card A25 or grounded by the
host.

D15 - D00 I/O 31, 30, 29, 28,
27, 49, 48, 47, 6,
5, 4, 3, 2, 23, 22,
21

These lines carry the Data, Commands and Status infor-
mation between the host and the controller. D00 is the
LSB of the Even Byte of the Word. D08 is the LSB of the
Odd Byte of the Word.

GND – 1, 50 Ground.
-OE I 9 This is an Output Enable strobe generated by the host

interface. It is used to read data from the CompactFlash
Storage Card or CF+ Card in Memory Mode and to read
the CIS and configuration registers

3

Signal Name Dir Pin Description
READY O 37 This signal is set high when the CompactFlash Storage

Card or CF+ Card is ready to accept a new data transfer
operation and is held low when the card is busy. At power
up and at Reset, the READY signal is held low (busy)
until the Compact Flash Storage Card or CF+ Card has
completed its power up or reset function. No access of any
type should be made to the CompactFlash Storage Card
or CF+ Card during this time. Note, however, that when
a card is powered up and used with +RESET continu-
ously disconnected or asserted, the reset function of this
pin is disabled and consequently the continuous assertion
of +RESET will not cause the READY signal to remain
continuously in the busy state

-REG I 44 This signal is used during Memory Cycles to distinguish
between Common Memory and Register (Attribute) Mem-
ory accesses. High for Common Memory, Low for At-
tribute Memory.

RESET I 41 When the pin is high, this signal Resets the Compact Flash
Storage Card or CF+ Card. The CompactFlash Storage
Card or CF+ Card is Reset only at power up if this pin
is left high or open from power-up. The CompactFlash
Storage Card or CF+ Card is also Reset when the Soft
Reset bit in the Card Configuration Option Register is
set.

VCC – 13, 38 +5 V, +3.3 V power.
-VS1, -VS2 O 33, 40 Voltage Sense Signals. -VS1 is grounded so that the Com-

pactFlash Storage Card or CF+ Card CIS can be read at
3.3 volts and -VS2 is reserved by PCMCIA for a secondary
voltage.

-WAIT O 42 The -WAIT signal is driven low by the CompactFlash Stor-
age Card or CF+ Card to signal the host to delay comple-
tion of a memory or I/O cycle that is in progress.

-WE I 36 This is a signal driven by the host and used for strobing
memory write data to the registers of the CompactFlash
Storage Card or CF+ Card when the card is configured in
the memory interface mode. It is also used for writing the
configuration registers.

WP O 24 The CompactFlash Storage Card or CF+ Card does not
have a write protect switch. This signal is held low after
the completion of the reset initialization sequence.

3.5 Timing Diagrams and Signal Interface

The CompactFlash is very complex. We emulate the following timing diagrams. Attribute Memory access
time is defined as 300ns. Detailed timing specifications are shown in following tables.

4

Figure 2: Various Actual Timings of Attribute Memory Reads

Figure 3: Timing Diagram of Attribute Memory Read

5

Figure 4: Various Actual Timings of Common Memory Reads

Figure 5: Timing Diagram of Common Memory Read

6

Figure 6: Mapping of the FPGA Pins to the CompactFlash Connector

4 FAT16

4.1 Introduction

The FAT16 file system is a simple file system used by CompactFlash cards to store files. Before we can
actually start using a file system, we need to understand how the hard drive organizes partitions that
divide up the various file systems that might be present on a CompactFlash card. Considering the scope of
M.A.S.H., we intend to assume that the first partition on the CompactFlash will be a FAT16 one.

7

Since the CompactFlash will be read using Memory Mode, which has also been called Common Mode,
the FAT16 file system layer will access the CompactFlash through simple I/O memory reads. In other words,
the FAT16 layer will write a specific memory location to reference a specific block on the CompactFlash.
The data from the CompactFlash will be written to a specific memory location accesible to the FAT16 layer.

4.2 Master Boot Record

Located at Cylinder 0, Head 0, Sector 1, in the first 512 bytes, the Master Boot Record keeps track of the
various partitions that exist on the hard drive. The first partition entry, whose details are encapsulated in
16 bytes, is located at offset 0x1BE.

4.3 Partition Entry

The block of 16 bytes is organized according to the following table. Since we are using a 64MB CompactFlash
card, the “Type of Partition” should contain a value of 0x06, which indiciates that the partition of a 16-bit
FAT (Partition Larger than 32MB).

Offset Description Size (bytes)
00h Current State of Partition (00h=Inactive, 80h=Active) 1B
01h Beginning of Partition - Head 1B
02h Beginning of Partition - Cylinder/Sector 2B
04h Type of Partition 1B
05h End of Partition - Head 1B
06h End of Partition - Cylinder/Sector 2B
08h Number of Sectors Between the MBR and the First Sector in the Partition 4B
0Ch Number of Sectors in the Partition 4B

4.4 FAT16 Drive Layout

The following table describes how each partition is laid out. Since we will assume that the files will be
located directly in the root file directory, we will not have to traverse further than the root directory entry,
which should point directly the files to be used.

Offset Description
Start of Partition Boot Sector
Start + # of Reserved Sectors FAT Tables
Start + # of Reserved + (# of Sectors Per FAT
* 2)

Root Directory Entry

Start + # of Reserved + (# of Sectors Per FAT
* 2) + ((Maximum Root Directory Entries * 32)
/ Bytes per Sector)

Data Area (Starts with Cluster #2)

4.5 FAT16 Boot Record

At the beginning of a FAT16 partition, within the first sector, the boot record and its various details reside.
The following table breaks down the information located in the boot record.

8

Offset Description Size (bytes)
000h Jump Code + NOP 3B
003h OEM Name 8B
00Bh Bytes Per Sector 2B
00Dh Sectors Per Cluster 1B
00Eh Reserved Sectors 2B
010h Number of Copies of FAT 1B
011h Maximum Root Directory Entries 2B
013h Number of Sectors in Partition Smaller than 32MB 2B
015h Media Descriptor (F8h for Hard Disks) 1B
016h Sectors Per FAT 2B
018h Sectors Per Track 2B
01Ah Number of Heads 2B
01Ch Number of Hidden Sectors in Partition 4B
020h Number of Sectors in Partition 4B
024h Logical Drive Number of Partition 2B
026h Extended Signature (29h) 1B
027h Serial Number of Partition 4B
02Bh Volume Name of Partition 11B
036h FAT Name (FAT16) 8B
03Eh Executable Code 448B
1FEh Executable Marker (55h AAh) 2B

4.6 Clusters

Though we do not have to look beyond the root directory entry, we will still need to refer to the FAT Tables
in order to traverse the clusters that comprise the entire file. The FAT16 drive actually maintains multiple
copies of the FAT table, one for updating and one for backup. Each row contains a value and associated
meaning according to the following table.

FAT Code Range Meaning
0000h Available Cluster
0002h-FFEFh Used, Next Cluster in File
FFF0h-FFF6h Reserved Cluster
FFF7h BAD Cluster
FFF8h-FFFF Used, Last Cluster in File

4.7 Directory Table

Each entry in a directory table consists of 32 bytes. Assuming the directory entry is formated using the
traditional DOS 8.3, the 32 bytes will consist of the following information (contained in yet another table).

Offset Length Value
0 8B File Name
8 3B Extension
11 1B Attribute (00ARSHDV)
22 2B Time
24 2B Date
26 2B Cluster
28 4B File Size

9

The Attribute byte has the following breakdown:

• 0: unused bit

• A: archive bit,

• R: read-only bit

• S: system bit

• D: directory bit

• V: volume bit

4.8 Summary

Now that the FAT16 File System Format has been thoroughly broken into many tables, its use in the
M.A.S.H. karaoke system can be described.

1. Read the 16 bytes that consists of the First Partition Entry of Master Boot Record.

2. Check to ensure that the partition is “Active”. If Active, record the type, location, and dimensions of
the drive.

3. Read the first partition’s Boot Record.

4. Record the partition’s meta information and pay particular attention to the “Sectors per Cluster” and
“Sectors per FAT” which will help locate the start of the FAT Tables.

5. Load the first directory entry from the “Root Directory Entry”.

6. Check to make sure the first entry is a file with a file name that ends in a supported audio format (ie.
WAV format) or some text file that maintains lyrics or other necessary data.

7. Starting at the Cluster referenced by the directory entry, collect each cluster included by the file until
a FAT Table lookup returns 0xFFFF.

5 Memory Controller

The memory controller acts like a traffic light at an intersection of a busy highway and a farm road. The
Audio DAC is a car running on the highway, since its memory access must have a higher priority than the
CPU, otherwise the audio playback will skip.

The audio player software is in charge of putting audio data into a circular buffer. The audio player will
not signal the Audio DAC to start playback until the circular buffer wraps around and reaches the beginning
of the buffer. When this happens, the audio player signals the Audio DAC to commence. When the memory
controller sees the Audio DAC requesting access to the circular buffer, the memory controller will prevent
the audio player from writing to the buffer and force it to wait until the DAC is finished.

The implementation of the memory controller will take the form of the included finite state machine.
When the audio player needs to access memory, the access will granted provided that there is no other
processes of higher priority such as the Audio DAC reading or writing to memory. When the DAC reads
from memory, accesses from the audio player are restricted.

10

Figure 7: Memory Controller and Neighboring Components

6 Audio Codec

The Audio DAC requires several control signals which control how the audio data is played back. It takes
in serial audio streams at a predefined rate. First, our audio player will parse the WAV file header and use
the parsed settings to setup the DAC. Next, the audio data will be written to a BRAM buffer by the audio
player, a C program, which coordinates the entire audio playback process. The buffer acts as a two port
FIFO which will deliver the data to a control module. This control module will send it serially into the DAC.
We are not yet sure if we can write to the buffer directly from the flash card or whether we will need an
intermediate buffer in the SDRAM. The additional required clocks can be taken from the several availiable
system clocks.

The accompanying C program reads in a wave file and will write the data to the buffer and the various
contr ol register inside the audio chip, possibly through another buffer.

#include <stdio.h>

int main() {
int i=0;
int channels=0;
int fmt_length=0;
int tag=0;
int sample_rate=0;
int byte_rate=0;
int block_size=0;
int sample_size=0;
char current4[4]=" ";
char current2[2]=" ";
int f_length=0;
int data_length =0;

11

CO

AO

CW

AW

f/p

e

 States
CO : CPU operating
CW : CPU waiting
AO : Audio operating
AW : Audio waiting

Transitions
f: buffer full
p: Audio playing
e: buffer empty

 W

w: memory writing
r : memory reading
wa: waiting
s: starting timer
c: release control of mem

wa

rwa/s

c c

CO

AO

CW

AW

f/p

e

 States

CO : CPU operatingCW : CPU waitingAO : Audio operatingAW : Audio waiting

Transitions

f: buffer fullp: Audio playinge: buffer empty

 W

w: memory writing

r : memory readingwa: waitings: starting timerc: release control of mem

wa

r

wa/s

c

c

CO

AO

CW

AW

f/p

e

 States
CO : CPU operating
CW : CPU waiting
AO : Audio operating
AW : Audio waiting

Transitions
f: buffer full
p: Audio playing
e: buffer empty

 W

w: memory writing
r : memory reading
wa: waiting
s: starting timer
c: release control of mem

wa

rwa/s

c c

Figure 8: Memory Controller State Machine

12

Audio Codec

cclk cdti cdto csn sdti sdto

12.5Mhz

3.1Mhz

48Khz

Audio Controller

128 sample
FIFO 2 port BRAM Block

32bit

Data

Mclk
Bclk

Lrck

Data

Addr

Addr

32bit
Software

System clocks

Figure 9: Audio Codec and Neighboring Components

13

FILE *waveFile;
waveFile = fopen("homer_doh.wav", "r");
for(i=0; i<4; i++)
{
current4[i]=getc(waveFile);

}
printf("%s\n", current4);
for(i=0; i<4; i++)
{
current4[i]=getc(waveFile);

}
f_length=current4[3]*256*256*256+current4[2]*256*256+current4[1]*256+current4[0];
printf("file length-8 = %d\n", f_length);
for(i=0; i<4; i++)
{
current4[i]=getc(waveFile);

}
printf("%s\n", current4);
for(i=0; i<4; i++)
{
current4[i]=getc(waveFile);

}
printf("%s\n", current4);
for(i=0; i<4; i++)
{
current4[i]=getc(waveFile);

}
fmt_length=current4[3]*256*256*256+current4[2]*256*256+current4[1]*256+current4[0];
for(i=0; i<2; i++)
{
current2[i]=getc(waveFile);

}
tag=current2[1]*256+current2[0];
printf("format is %d\n", tag);
for(i=0; i<2; i++)
{
current2[i]=getc(waveFile);

}
channels=current2[1]*256+current2[0];
printf("%d channels\n", channels);
for(i=0; i<4; i++)
{
current4[i]=getc(waveFile);

}
sample_rate=current4[3]*256*256*256+current4[2]*256*256+current4[1]*256+current4[0];
printf("sample rate = %d\n", sample_rate);
for(i=0; i<4; i++)
{
current4[i]=getc(waveFile);

}
byte_rate=current4[3]*256*256*256+current4[2]*256*256+current4[1]*256+current4[0];
printf("bytes/second = %d\n", byte_rate);
for(i=0; i<2; i++)
{

14

current2[i]=getc(waveFile);
}

block_size=current2[1]*256+current2[0];
printf("bytes/sample %d\n", block_size);
for(i=0; i<2; i++)
{
current2[i]=getc(waveFile);

}
sample_size=current2[1]*256+current2[0];
printf("%d bit samples\n", sample_size);
for(i=0; i<4; i++)
{
current4[i]=getc(waveFile);

}
printf("%s\n", current4);
for(i=0; i<4; i++)
{
current4[i]=getc(waveFile);

}
data_length=current4[3]*256*256*256+current4[2]*256*256+current4[1]*256+current4[0];
printf("data_length = %d\n", data_length);
/* for(i=0; i<data_length; i++)
{
printf("%u ", getc(waveFile));
if(i%10==0)

printf("\n");
}*/
printf("\n");
fclose(waveFile);
return 0;

}

15

