

Project Design Document

MANIC (MP3 Player)

Prakash GS(pg2132),
Vijayaraka N(vn2107),
Devyani Gupta(dg2168)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

1. Introduction:
We propose to build an mp3 player, using the existing onboard sound processing
peripherals.

2. MP3 Decoding Algorithm:

 We intend to use MAD (Mpeg Audio Decoder) library for mp3 decoding. MAD
is available under the terms of the GNU General Public License .There are several
advantages of using MAD:

· 24-bit PCM output
·100% fixed-point (integer) computation

Performing floating-point arithmetic delays the decoding process. Hence the
MAD decoder was chosen.

The decoding process basically consists of the following parts:

3. Implementation:

Since a complete software implementation of the algorithm would be slow, we
have decided to implement a few parts of the algorithm in VHDL. After an
analysis of some opensource decoders like mpg321 on a standalone Linux box
using gprof, we have observed that the functions implementing the Huffman
Decoding and the IMDCT took the most amount of time. Hence we have
decided to implement these two processes in VHDL.

Huffman
Decoder

Requantizer Reordering

 Antialias IMDCT FilterBank

Audio output

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

4. Control Flow:

Block Diagram

Processor

UART Huffman
Decoding in
Hardware

IMDCT

 BRAM buffer

Audio Controller

OPB

BitStream

SRAM

RAM Controller

OPB Slave Ctrl

BRAM

BRAM

SRAM FPGA

Audio
Codec Streaming Serial

Input through the
serial port

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The control flow can be broken down into the following:

1. Reading mp3 from a host via the Serial port/ Ethernet controller:

Depending on the output quality of the sound (i.e. ranging from 32 kbps to
128kbps) we have decided to use the serial port or the Ethernet to stream mp3
data to the SRAM. Interrupts are used to manage switching between the two tasks
of reading mp3 data from the SRAM and decoding and streaming data into the
audio device. The Ram Controller will be used to generate the following signals
to the SRAM.

1.
2.

2. Decoding the mp3 :

The following steps are implemented in the MP3 decoding algorithm.

a) Huffman Decoding (VHDL Implementation)
b) Requantizer
c) Reordering
d) Antialias
e) IMDCT(VHDL Implementation)
f) Filter Bank

FPGA CE#
OE#
WE#
UB#
LB#

A0-A17 SRAM
D0-D15

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Huffman Deocding and IMDCT will be implemented in hardware. We will use the
available BRAMs on the FPGA, to communicate to the Huffman core as well as the
IMDCT core as shown in the block diagram. The remaining processing (requantizer,
reordering, antialias and filter bank) will be done in software (C programming) on
the Microblaze processor. The main loop of the microblaze would be processing these
steps, waiting on the results from the Huffman core and the IMDCT core. The
interrupt handler will be used to stream in data from the serial port and store it on
SRAM.

3. Sending decoded audio to the audio codec (AK4565):

The FPGA streams the decoded bit stream serial (through the SDTI pin) to the
audio codec through the BRAM buffer. The buffer can store 4 kilobits of data.
Each sample is of 32 bits. So at a time, we can store upto 128 samples on it. If our
sampling frequency is 44.1 Khz, 128 samples would require 3 ms. The audio
controller would generate an interrupt after every 1.5 ms, indicating that the
buffer is half full. From the buffer, the serial bit streams are synchronized with a
clock from the FPGA that enters the codec on the BLCK signal. The master clock
from the FPGA (MCLK) synchronizes all the internal operations of the codec.
The FPGA uses the LRCK (Left Right Clock) to select the left or the right
channel as the destination of the serial data.

s

 FPGA

MCLK INTL0
LRCK INTR0
BCLK INTL1
SDTI INTR1
SDTO0 Audio EXTL
CCLK Codec EXTR
CDTI LIN
CDTO RIN
CSN#
 LOUT

 ROUT

INT0

(JP2)

INT1
(JP2)

 Microphone

(J1 & JP2)

Line In
(J1 & JP2)

() LINE OUT
(J1 & JP2)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The following signals to the Codec from the FPGA are generated from the audio
controller.

1. MCLK
2. LRCK
3. BCLK
4. CSN#

Data is passed in through SDTI

 The analog streams are passed to LOUT and ROUT.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

