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Introduction 
 
System Design 
Overview 
In broad terms, we are using the FGPA and its peripherals to construct a simple video 
cam. This camera takes in analog video, converts it to a digital stream and broadcasts it 
through the Ethernet port as UDP packets. 
 
The flow of data can be summarized in the following block diagram: 

 
 
Details 
The input into the Video Decoder is a Split, Differential S-Video(Y/C) Input. Our input is 
going to be in PAL format. We will configure the decoder to scale (decimate) the input 
into 128x128 pixels. Each pixel will be represented by 1 byte. 
 
As the data streams in, it will reside temporarily in the Video Decoders’s 32 word by 4 
Byte FIFO register for Video Output. When possible we will remove the data from the 
FIFO buffer and move it into SRAM.  
 
Concurrently, we will display the data out to a screen buffer. One trick that we hope to 
employ is to dump the Video-In data into the screen buffer directly. 
 
Furthermore, every so often we will create a new packet on the Ethernet card, dumping 
some UDP, IP and ETHERNET data into the packet data. Then as the data is available in 
the SRAM, we push the data into the Packet’s data portion and pass it along to the 
Ethernet controller. 
 
Data sizes 
The following preliminary calculations were made: 
Data input: 128x128 Bytes = 16384 = 16K 
This data is moved cleverly into the 640x480=307200= 300K Screen Buffer that is used 
to display the current image on the screen 
 
The Ethernet card creates Ethernet Packets. This includes a 6-byte source, 6-byte 
destination, 2 bytes of type/length and Data. 
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The data portion of the Ethernet packet will consist of the following: 
IP Header – 20 Bytes 
UDP Header – 4 Bytes 
Screen Position Information – 1 byte 
128x4 = 512 bytes of Screen data. 
 
With this setup, we send 128x4 bytes each time, requiring the application t send out 32 
packets.  
 
Components 
The Clock 
Implementation 
Cristian suggested and helped implement a 100 MHz clock that will be used to drive the 
I/O operations. The System Clock will still run at 50 MHz, and the vga clock will run at 
25 MHz.  
 
Expected times 
This design allows us to perform an Ethernet read (16 bit), SRAM read (32 bit), SRAM 
write (32 bit) in 2 clock cycles.  
An Ethernet write (16 bit), SRAM read (16 bit), SRAM write (16 bit) will occur in 1 
clock cycle. 
 
 
Ethernet Controller (ASIX AX88796L) 
Hardware 
We are using the 10/100 Ethernet Interface on the MAC+PHY chip (AX88796). 
 
Initialization 
To initialize this device we will have to write to certain registers setting certain 
parameters. 
 
Transmission details 
Writing to Ethernet memory is not enough to initiate transmission. In order to send out 
data, the memory must be moved from the on-chip SRAM into the transmission FIFO. 
This is accomplished by an on-chip DMA operation, which is controlled by setting 
certain control registers. The following steps portray a high level view on what is 
required to transmit a packet: 
 

1) Send Packet data to Ethernet’s on-chip SRAM  
a. This includes the 128*4 data Bytes, 1 positioning Byte, 4 UDP Bytes and 

20 IP header Bytes 
2) Send “0x22” to the Command Register to activate the controller. 
3) Start a Remote DMA write operation to transfer data from the on-chip SRAM to 

the FIFO. 
4) Send “0x26” to the command register to set the transmit bit, thereby initiating 

transmission. 



 
Registers 
The Ethernet controller consists of ne2000 compatible control registers. (For a list of 
these registers see 
http://www1.cs.columbia.edu/~sedwards/classes/2004/4840/ax88796.pdf, pages 32 and 
33).  

 
Ethernet Packets 
As mentioned previously, the Ethernet packets creation involves setting up the packet’s 
source and destination MAC and filling the packet’s data with  

1. IP Header – 20 Bytes 
a. Version – 4 bits 

i. Value = 4= “0b0100” 
b. IHL – 4 bits 

i. Value = 5 = “0101” 
c. TOS – 1 Byte 

i. Value = 0 “0b00000000” 
d. Total Length – 2 Bytes 

i. Value =512+1+4+20= 537 = “0x217” 
e. Identification – 2 Bytes 

i. A UNIQUE number 
f. Flags – 3 bits 

i. Value = “010” 
g. Fragment Offset - 13 bits 

i. “0000000000000” 
h. TTL – 1 Byte 

i. “11111111” 
i. Protocol – 1 Byte 

i. Value = UDP = 17 
j. Header Checksum – 2 Bytes 

i. COMPUTED On the fly 
k. Source IP - 4 Bytes 

i. Constant Value to Be Determined 
l. Destination IP – 4 Bytes 

i. Constant Value to Be Determined 
m. Data 

i. UDP Header - 4 bytes 
ii. Data – 513 bytes 

2. UDP Header – 4 Bytes 
a. Source Port – 1 byte 

i. 5001 
b. Destination Port – 1 byte 

i. 5001 
c. Length – 1 byte 

i. 512+1+4 = 517 
d. Checksum – 1 byte 

http://www1.cs.columbia.edu/~sedwards/classes/2004/4840/ax88796.pdf


i. Value = “0”, disable the checksum 
3. Screen Position Information – 1 byte 

a. Because the screen is split into 32 128x4 packets, each packet will have  a 
position number of 0-31 

4. 128x4 = 512 bytes of Screen data. 
a. This is the corresponding data read from the SRAM. 

 
Most of the Header information is constant and can be hardcoded into memory. 
The UDP checksum is hardcoded to 0, thus disabling it. 
Each Ethernet packet requires a unique Identification Number at the IP layer. Because 
this changes, the IP header Checksum is recalculated on the fly. 
 
SRAM (Toshiba TC55V16256J) 
Hardware 
Toshiba TC55V16256J. 
 
Features 
256K x 16 bits of available memory. This is 512 K. 
 
Usage 
We are using this peripheral to dump the image data from the Video decoder to the frame 
buffer. We are using 640x480 = 300K of memory for the Frame Buffer for the video 
output.  The Video input will go to only a 128x128 bit subset of this. The rest will be 
zeroed out. We do this in this way to make the video out easier to implement. 
 
Video Out (Texas Instruments THS8133B) 
Hardware 
We are using the onboard Texas Instruments THS8133B Digital To Analog Converter. 
 
Features 
This chip includes a triple 10 bit Digital To Analog Converter (DAC).  
Most of the code for this device was written and handled in labs 5 and 6.  
 
Video In (Philips SAA7114H) 
Hardware 
Video Input: We are using the Philips SAA7114-H decoder chip. 
 
Features 
This chip automatically digitizes a NTSC, SECAM and PAL video signals. 
 
Initialization 
We will have to send in a bunch of control signals, configuring the device. 
This information includes Scalar, pixels… This is set up using the I2C Bus. 
Further information will be decided during implementation. 
 



The Output of this device is a 128x128 byte FIFO Buffer that will be placed into the 
SRAM. 
 
Registers 
All the registers need to be set according to the PAL settings listed in the Philips manual 
(http://www1.cs.columbia.edu/~sedwards/classes/2004/4840/SAA7114H_1.pdf) on pages 
127 and 128.  
 
OPB Bus 
Arbiter 
This is the most complex part of the project. We have to write an arbiter to decide which 
component has access to the bus. The following 3 components are waiting to use the bus: 

1) The Video Input wants to write 128x128 Bytes to SRAM. 
2) The Video Output wants to read 640x480 Frame Bytes from SRAM to the DAC. 
3) The CPU wants to write packets to the Ethernet Controller. 

 
Memory Mapping 
At this point we have a preliminary memory mapping that is being used in the bus arbiter 
(ie addressing the SRAM and Ethernet memory). 
 
A proper OPB device will be addressed in the following way (Note that the address given 
to the OPB controller is 32 bits wide). 
 
Bit Position Value 
31:23 “000000001” 
22:21 “00” – SRAM 

“01” - Ethernet 
20:1 Device Address 
 
The Ethernet’s onboard memory is mapped as follows (offset from starting address, 
which by default is set to 0x200): 
MAC Core Registers – 0x000 to 0x3FFF 
On-Board SRAM – 0x4000 to 0x7FFF 
 
At the time of this writing, memory-addressing issues are being worked on and should 
soon be fixed. 
 
It should be noted that all reads and writes to the Ethernet are 16 bits, while reads and 
writes to the memory can be (and will probably be) 32 bits. 
 
Inter-Component Wiring 
The following pin connections are to be placed in the UCF file: 
 
#UCF FILE 
net FPGA_CLK1 loc="p77"; 
net PB_LB_N loc="p140";  #BAR9 
net PB_UB_N loc="p146";  #BAR10 

http://www1.cs.columbia.edu/~sedwards/classes/2004/4840/SAA7114H_1.pdf


net PB_WE_N loc="p123"; 
net PB_OE_N loc="p125"; 
 
net RAM_CE_N loc="p147"; 
 
net PB_A<0> loc="p83"; #BAR1 
net PB_A<1> loc="p84"; #BAR2 
net PB_A<2> loc="p86"; #BAR3 
net PB_A<3> loc="p87"; #BAR4 
net PB_A<4> loc="p88"; #BAR5 
net PB_A<5> loc="p89"; #BAR6 
net PB_A<6> loc="p93"; #BAR7 
net PB_A<7> loc="p94"; #BAR8 
net PB_A<8> loc="p100"; 
net PB_A<9> loc="p101"; 
net PB_A<10> loc="p102"; 
net PB_A<11> loc="p109"; 
net PB_A<12> loc="p110"; 
net PB_A<13> loc="p111"; 
net PB_A<14> loc="p112"; 
net PB_A<15> loc="p113"; 
net PB_A<16> loc="p114"; 
net PB_A<17> loc="p115"; 
net PB_A<18> loc="p121"; 
net PB_A<19> loc="p122"; 
 
 
net PB_D<0> loc="p153"; #LEFT_A 
net PB_D<1> loc="p145"; #LEFT_B 
net PB_D<2> loc="p141"; #LEFT_C 
net PB_D<3> loc="p135"; #LEFT_D 
net PB_D<4> loc="p126"; #LEFT_E 
net PB_D<5> loc="p120"; #LEFT_F 
net PB_D<6> loc="p116"; #LEFT_G 
net PB_D<7> loc="p108"; #LEFT_DP 
net PB_D<8> loc="p127"; #RIGHT_A 
net PB_D<9> loc="p129"; #RIGHT_B 
net PB_D<10> loc="p132"; #RIGHT_C 
net PB_D<11> loc="p133"; #RIGHT_D 
net PB_D<12> loc="p134"; #RIGHT_E 
net PB_D<13> loc="p136"; #RIGHT_F 
net PB_D<14> loc="p138"; #RIGHT_G 
net PB_D<15> loc="p139"; #RIGHT_DP 
 
net ETHERNET_CS_N loc="p82"; 
net ETHERNET_IOCS16_N loc="p74"; 
net ETHERNET_RDY loc="p81"; 
net ETHERNER_IREQ loc="p75"; 
 
net VIDIN_ICLK loc="p185"; 
net VIDIN_IDQ loc="p205"; 
net VIDIN_ITRDY loc="p206"; 
net VIDIN_ITRI loc="p204"; 
net VIDIN_IGPH loc="p200"; 
net VIDIN_IGPV loc="p201"; 
net VIDIN_IGP<0> loc="p203"; 
net VIDIN_IGP<1> loc="p202"; 
net VIDIN_IPD<0> loc="p188"; 
net VIDIN_IPD<1> loc="p189"; 
net VIDIN_IPD<2> loc="p191"; 
net VIDIN_IPD<3> loc="p192"; 
net VIDIN_IPD<4> loc="p193"; 
net VIDIN_IPD<5> loc="p194"; 
net VIDIN_IPD<6> loc="p198"; 
net VIDIN_IPD<7> loc="p199"; 
net VIDIN_HPD<0> loc="p174"; 
net VIDIN_HPD<1> loc="p175"; 
net VIDIN_HPD<2> loc="p176"; 
net VIDIN_HPD<3> loc="p177"; 
net VIDIN_HPD<4> loc="p178"; 



net VIDIN_HPD<5> loc="p179"; 
net VIDIN_HPD<6> loc="p180"; 
net VIDIN_HPD<7> loc="p187"; 
 
net I2C_SCL loc="p6" 
net I2C_SDA loc="p5" 
 
net VIDOUT_CLK loc="p23"; 
net VIDOUT_BLANK_N loc="p24"; 
net VIDOUT_HSYNC_N loc="p8"; 
net VIDOUT_VSYNC_N loc="p7"; 
 
net VIDOUT_RCR<0> loc="p41"; 
net VIDOUT_RCR<1> loc="p40"; 
net VIDOUT_RCR<2> loc="p36"; 
net VIDOUT_RCR<3> loc="p35"; 
net VIDOUT_RCR<4> loc="p34"; 
net VIDOUT_RCR<5> loc="p33"; 
net VIDOUT_RCR<6> loc="p31"; 
net VIDOUT_RCR<7> loc="p30"; 
net VIDOUT_RCR<8> loc="p29"; 
net VIDOUT_RCR<9> loc="p27"; 
 
net VIDOUT_GY<0> loc="p9" ; 
net VIDOUT_GY<1> loc="p10"; 
net VIDOUT_GY<2> loc="p11"; 
net VIDOUT_GY<3> loc="p15"; 
net VIDOUT_GY<4> loc="p16"; 
net VIDOUT_GY<5> loc="p17"; 
net VIDOUT_GY<6> loc="p18"; 
net VIDOUT_GY<7> loc="p20"; 
net VIDOUT_GY<8> loc="p21"; 
net VIDOUT_GY<9> loc="p22"; 
 
net VIDOUT_BCB<0> loc="p42"; 
net VIDOUT_BCB<1> loc="p43"; 
net VIDOUT_BCB<2> loc="p44"; 
net VIDOUT_BCB<3> loc="p45"; 
net VIDOUT_BCB<4> loc="p46"; 
net VIDOUT_BCB<5> loc="p47"; 
net VIDOUT_BCB<6> loc="p48"; 
net VIDOUT_BCB<7> loc="p49"; 
net VIDOUT_BCB<8> loc="p55"; 
net VIDOUT_BCB<9> loc="p56"; 


