
Concurrency
COMS W4115

Prof. Stephen A. Edwards
Spring 2002

Columbia University
Department of Computer Science

Concurrency

Multiple, simultaneous execution contexts.

Want to “walk and chew gum at the same time” to

• Capture simultaneity of system structure

E.g., Web Servers must deal with multiple,
simultaneous, independent requests.

• Deal with independent physical devices

The disk drive is delivering data while the network is
delivering packets while the user is typing while. . .

• Increase performance

Split the problem into parts and solve each on a
separate processor

Coroutines

Basic idea: run two routines
concurrently and let them
trade control.

“Pick up where you left off”

Example: Lexer/parser

Scan control transfer

Parse
control transfer

Scan control transfer

Parse control transfer

Scan control transfer

Parse
control transfer

Coroutines

char c;

void scan() {

c = ’s’;

transfer parse;

c = ’a’;

transfer parse;

c = ’e’;

transfer parse;

}

parse() {

char buf[10];

transfer scan;

buf[0] = c;

transfer scan;

buf[1] = c;

transfer scan;

buf[2] = c;

}

Implementing Coroutines

Languages such as C, C++, Java don’t have direct
support.

Some libraries provide such a mechanism.

Challenge: Each couroutine needs a separate stack

Can be faked; often done.

Faking Coroutines in C

/* returns 0 1 .. 9 10 9 .. 1 0 0 .. */
int count() {

int i;

for (i = 0 ; i < 10 ; i++) {
return i;

}
for (i = 10 ; i > 0 ; i--) {

return i;

}
for (;;) {

return 0;

}

}

Faking Coroutines in C

/* returns 0 1 .. 9 10 9 .. 1 0 0 .. */
int count() {

static int state = 0; /* program counter state */
static int i; /* use static, not automatic vars */
switch (state) {
case 0:
for (i = 0 ; i < 10 ; i++) {

state = 1; return i;
case 1: ;
}
for (i = 10 ; i > 0 ; i--) {

state = 2; return i;
case 2: ;
}
for (;;) {

state = 3; return 0;
case 3: ;
}

}
}

Faking Coroutines in Java

Harder because it insists on more structure.
class Corout {

int state = 0;
int i;
public int count() {
switch (state) {
case 0:

i = 0;
case 1:

while (i < 10) { state = 1; return i++; }
i = 10;

case 2:
while (i > 0) { state = 2; return i--; }

case 3:
state = 3; return 0;

}
return 0;

}
}

Cooperative Multitasking

Coroutines explicitly say when to context switch and who
to run next.

Programmer completely responsible for scheduling.

Alternative: cooperative multitasking

Programs explicitly release control to operating system.

Operating system responsible for deciding which program
runs next.

Cooperative Multitasking

Typical MacOS < 10 or Windows < 95 program:

void main() {
Event e;
while ((e = get_next_event

Magical

()) != QUIT) {
switch (e) {

case CLICK: /* ... */ break;
case DRAG: /* ... */ break;
case DOUBLECLICK: /* ... */ break;
case KEYDOWN: /* ... */ break;
/* ... */

}
}

}

Cooperative Multitasking

Advantages:

Frees the programmer from worrying about which
other processes are running

Cheap to implement.

Disadvantages:

Malicious process may never call get next event.

Programmer needs to add calls to long-executing
event responses.

Programmer still partially responsible for scheduling.

Multiprogramming History

First processors ran batch jobs: resident monitor loads
one program, runs it, then loads the next.

Problem: I/O was slow, even by the standards of the time.

You’re wasting expensive cycles waiting for the punch
card reader!

Solution: Multiprogramming with interrupt-driven I/O

Multiprogramming

Avoids I/O busy
waiting.

Context switch
on I/O request.

I/O completion
triggers interrupt.

Interrupt causes
context switch.

App 1 Disk read

App 2
App 1 read complete

App 1
Disk read

App 3
Disk write

App 2 App 1 read complete

App 1 App 3 write complete

Preemptive Multitasking

Idea: give the OS the power to interrupt any process.

Advantages:

Programmer completely freed from thinking about
scheduling: never needs to say “context switch.”

Scheduler can enforce fairness: no process may
monopolize processor

Disadvantages:

Heavyweight: each process typically has own memory
map (switching costly)

Inter-program interaction now asynchronous: program
may be interrupted anywhere

Timesharing

Model used on most modern operating systems (e.g.,
Unix 1970s, Windows/Mac 2000s)

System runs multiple threads. Each a separate execution
context (registers, stack, memory).

Single-processor system has OS switch among threads.
Each imagines it is running on its own computer.

Concurrent, but not simultaneous execution. Only one
thread running at a time. Gives the impression of
simultaneity.

Three Threads on a Uniprocessor

↓

time

Thread 1 Context switch

Thread 2 Context switch

Thread 3 Context switch

Thread 1 Context switch

Thread 2 Context switch

Thread 3 Context switch

Concurrency Schemes Compared

Scheduler Fair Cost

Coroutines Program No Low

Cooperative Multitasking Program/OS No Medium

Multiprogramming OS No Medium

Preemptive Multitasking OS Yes High

Java’s Support for Concurrency

Concurrency Support in Java

Based on preemptive multitasking.

Threads and synchronization part of language.

Model: multiple program counters sharing a memory
space. Separate stacks.

All objects can be shared among threads.

Fundamentally nondeterministic, but language provides
some facilities for avoiding it.

Thread Basics

Creating a thread:

class MyThread extends Thread {

public void run() {

/* thread body */
}

}

MyThread mt = new MyThread(); // Create the thread
mt.start(); // Invoke run, return immediately

Thread Basics

A thread is a separate program counter with its own stack
and local variables.

It is not an object: the Thread class is just a way to start
a thread.

A thread has no sense of ownership: classes, objects,
methods, etc. do not belong to any particular thread.

Any method may be executed by one or more threads,
even simultaneously.

Suspension: The Sleep Method

public void run() {

for(;;) {

try {

sleep(1000); // Pause for 1 second
} catch (InterruptedException e) {

return; // Caused by thread.interrupt()
}

System.out.println("Tick");

}

}

Sleep

Does this print Tick once a
second? No.

sleep() delay is a lower bound

Rest of the loop takes an
indeterminate amount of time.

public void run() {

for(;;) {

try {

sleep(1000);

} catch (InterruptedException e) {

return;

}

System.out.println("Tick");

}

}

Races

In a concurrent world, always assume something else is
accessing your objects.

Other threads are your adversary

Consider what can happen when two threads are
simultaneously reading and writing.

Thread 1 Thread 2

f1 = a.field1 a.field1 = 1

f2 = a.field2 a.field2 = 2

Thread 1 sees old values

Thread 1 runs before Thread 2

Thread 1

1 f1 = a.field1 = old value

2 f2 = a.field2 = old value

Thread 2

a.field1 = 1 3

a.field2 = 2 4

Thread 1 sees new values

Thread 1 runs after Thread 2

Thread 1

3 f1 = a.field1 = 1

4 f2 = a.field2 = 2

Thread 2

a.field1 = 1 1

a.field2 = 2 2

Thread 1 sees inconsistent values

Execution of Thread 1 interrupts execution of Thread 2

Thread 1

2 f1 = a.field1 = 1

3 f2 = a.field2 = old value

Thread 2

a.field1 = 1 1

a.field2 = 2 4

Non-atomic Operations

Biggest problem is the third case: reader thread sees
partially-updated values

Might violate an invariant

Problem is non-atomic updates. Want

no write to interrupt a read;

no read to interrupt a write; and

no write to interrupt a write.

Subtle Non-atomic Operations

Java assumes a 32-bit architecure

32-bit reads and writes are guaranteed atomic

64-bit operations may not be

int i; double d;

Thread 1

i = 10;

d = 10.0;

Thread 2

i = 20;

d = 20.0;

i guaranteed to contain 10 or 20

d may contain garbage

(one word from 10.0, the other 20.0)

Locks: Making Things Atomic

Each object has a lock that may be owned by a thread

A thread waits if it attempts to acquire an lock already
owned by another thread

The lock is a counter: a thread may lock an object twice

Non-atomic operations

class NonAtomCount {

int c1 = 0, c2 = 2;

public void count() { c1++; c2++; }

public int readcount() { return c1 + c2; }

}

Invariant: readcount should return an even number.

Need both count and readcount to be atomic.

Synchronized Methods

class AtomCount {
int c1 = 0, c2 = 2;

public synchronized

Grab lock while
method running

void count() {
c1++; c2++;

}

public synchronized int readcount() {
return c1 + c2;

}
}

Object’s lock acquired when a synchronized method is
invoked.

Lock released when method terminates.

Synchronized Methods

Marking a method synchronized is rather coarse

Grabs the lock throughout the (potentially long)
execution of the method. May block other threads.

Only grabs the lock for its object. Can’t share a lock
outside the object.

Alternative: The synchronized statement

The Synchronized Statement

public void myMethod() {

synchronized (someobj) {

Grab someobj’s lock

// quick operation that must be atomic
} Release lock

// take a long time

synchronized (someobj) {

Grab someobj’s lock

// quick operation that must be atomic
} Release lock

}

The Synchronized Statement

Choice of object to lock is by convention;
language/compiler is mute.

Responsibility of programmer to ensure proper
synchronization.

Potentially every variable can be shared; compiler does
not check for “missing” synchronized statements.

Difficult to get right: Java libraries from Sun still have
thread-safety bugs.

Deadlock

1 synchronized (foo) {

synchronized (bar) {

// ...

}

}

synchronized (bar) { 2

synchronized (foo) { 3

// ...

}

}

Moral: Always acquire locks in the same order.

Priorities

Each thread has a priority from 1 to 10 (5 is typical)

Scheduler’s job is to keep the highest-priority thread
running

thread.setPriority(6)

What the Language Spec. Says

From The Java Language Specification,

Every thread has a priority. When there is competition
for processing resources, threads with higher priority
are generally executed in preference to threads with
lower priority. Such preference is not, however, a
guarantee that the highest priority thread will always
be running, and thread priorities cannot be used to
reliably implement mutual exclusion.

Vague enough?

Multiple Threads at the Same
Priority?

Language gives implementer freedom

Calling yield() suspends the current thread to allow
another at the same priority to run . . . maybe.

Solaris implementation runs threads until they stop
themselves (wait(), yield(), etc.)

Windows implementation timeslices.

Starvation

Java does not provide a fair scheduler.

Higher-priority threads can consume all the resources and
prevent threads from running.

This is starvation.

A timing dependent function of program, hardware, and
implementation.

Waiting for a Condition

Say you want a thread to wait for a condition before
proceeding.

An infinite loop might deadlock the system

while (!condition()) {}

Yielding avoids deadlock (probably), but is very inefficient.

while (!condition()) yield();

Thread reawakened frequently to check the condition:
polling.

Java’s Solution: wait() and notify()

wait() is like yield(), but a waiting thread can only be
reawakened by another thread.

while

Always in a loop; could be awakened
before condition is true

(!condition()) wait();

Thread that might affect the condition calls notify() to
resume the thread.

Programmer’s responsible for ensuring each wait() has
a matching notify().

wait() and notify()

Each object maintains a set of threads that are waiting for
its lock (its wait set).

synchronized (obj) { // Acquire lock on obj
obj.wait(); // Suspend and add this thread

// to obj’s wait set
} // Relinquish locks on obj

Other thread:

obj.notify(); // Awaken some waiting thread

wait() and notify()

Thread 1 acquires lock on obj

Thread 1 calls wait() on obj

Thread 1 releases lock on obj and adds itself to object’s
wait set.

Thread 2 calls notify() on obj (must have acquired
lock)

Thread 1 is reawakened; it was in obj’s wait set

Thread 1 reacquires lock on obj

Thread 1 continues from the wait()

wait() and notify()

Confusing enough?

notify() nondeterministically chooses one thread to
reawaken (many may wait on the same object). So what
happens where there’s more than one?

notifyAll() enables all waiting threads. Much safer.

Building a Blocking Buffer

class OnePlace {

El value;

public synchronized void write(El e) { .. }

public synchronized El read() { .. }

}

Only one thread may read or write the buffer at any time

Thread will block on read if no data is available

Thread will block on write if data has not been read

Building a Blocking Buffer

synchronized void write(El e)
throws InterruptedException {

while (value != null)
wait(); // Block while full

value = e;
notifyAll(); // Awaken any waiting read

}

public synchronized El read()
throws InterruptedException {

while (value == null)
wait(); // Block while empty

El e = value; value = null;
notifyAll(); // Awaken any waiting write
return e;

}

Thread States

born

ready

blocked waiting sleeping

running

dead

start()

yield()

sleep()

timeout

terminate

wait()

notify()

I/O

I/O completed

Other Approaches to Concurrency

co-begin/end

Statements in a Java block are composed sequentially

{

a(); b(); c();

}

Other languages (e.g., Esterel) include concurrent
composition:

emit A; pause; emit B

||

emit C

||

emit D; pause; emit E

Concurrent Composition

emit A; pause; emit B

||

emit C

||

emit D; pause; emit E

•

emit A;

pause;

emit B

emit C emit D;

pause;

emit E

• Waits for all threads to terminate

Parallel Loops

SR (provides a parallel loop):

co (i := 5 to 7) ->

p(a, b, i)

oc

•

p(a,b,5) p(a,b,6) p(a,b,7)

• Waits for all threads to terminate

Launch-at-elaboration

A procedure can execute a task concurrently in Ada:

procedure P is

task T is

-- Body runs along with call of P
end T;

begin

-- Body of P
end P;

Invoking procedure P gives

•

Body of P Body of T

•

Fork/Join

Java uses fork/join (actually start/join) to invoke and wait
for threads. Permits nonnested behavior.

b.start()

a.start()

a.join()

Thread a

b.join()

Thread b

Implicit Receipt and the RPC Model

Normally, when you call a procedure in a program, that
procedure is part of the same program:

foo(x, y, z)

Remote procedure call modifies this to allow the
procedure to be part of a different program on a different
computer.

Rather than passing arguments on the stack and the
return value in a register, RPC passes both over a
network (e.g., using TCP).

Implicit Receipt

This is a client/server model:

Client

foo(x,y) Server

foo(int a, int b)

return a + b;

Implicit Receipt

The server generally allows multiple RPC requests at
once. Each gets its own thread.

Client 1

foo(1,2) Server

foo(int, int)

return a+b;

Server

foo(int, int)

return a+b;

Client 2

foo(3,4)

Early Reply

A procedure usually terminates when it returns.

foo(x,y)

foo(int a, int b)

return a + b;

Early Reply

But what if it didn’t?

foo(x,y)

foo(int a, int b)

reply a + b;

More

instructions

executed

after reply

