
Abstract Syntax Trees
COMS W4115

Prof. Stephen A. Edwards
Spring 2003

Columbia University
Department of Computer Science

Parsing and Syntax Trees

Parsing decides if the program is part of the language.

Not that useful: we want more than a yes/no answer.

Like most, ANTLR parsers can include actions: pieces of
code that run when a rule is matched.

Top-down parsers: actions executed during parsing rules.

Bottom-up parsers: actions executed when rule is
“reduced.”

Actions

Simple languages can be interpreted with parser actions.

class CalcParser extends Parser;

expr returns [int r] { int a; r=0; }

: r=mexpr ("+" a=mexpr { r += a; })* EOF ;

mexpr returns [int r] { int a; r=0; }

: r=atom ("*" a=atom { r *= a; })* ;

atom returns [int r] { r=0; }

: i:INT

{ r = Integer.parseInt(i.getText()); } ;

Actions

In a top-down parser, actions are executed during the
matching routines.

Actions can appear anywhere within a rule: before, during,
or after a match.

rule { /* before */ }

: A { /* during */ } B

| C D { /* after */ } ;

Bottom-up parsers restricted to running actions only after
a rule has matched.

Implementing Actions

Nice thing about top-down parsing: grammar is essentially
imperative.

Action code simply interleaved with rule-matching.

Easy to understand what happens when.

Implementing Actions

expr returns [int r] { int a; r=0; }

: r=mexpr ("+" a=mexpr { r += a; })* EOF ;

public final int expr() { // What ANTLR builds

int r; int a; r=0;

r=mexpr();

while ((LA(1)==PLUS)) { // ()*

match(PLUS); // "+"

a=mexpr(); // a=mexpr

r += a; // { r += a; }

}

match(Token.EOF_TYPE);

return r;

}

Actions

Usually, actions build a data structure that represents the
program.

Separates parsing from translation.

Makes modification easier by minimizing interactions.

Allows parts of the program to be analyzed in different
orders.

Actions

Bottom-up parsers can only build bottom-up data
structures.

Children known first, parents later.

→ Constructor for any object can require knowledge of
children, but not of parent.

Context of an object only established later.

Top-down parsers can build both kinds of data structures.

What To Build?

Typically, an Abstract Syntax Tree that represents the
program.

Represents the syntax of the program almost exactly, but
easier for later passes to deal with.

Punctuation, whitespace, other irrelevant details omitted.

Abstract vs. Concrete Trees

Like scanning and parsing, objective is to discard
irrelevant details.

E.g., comma-separated lists are nice syntactically, but
later stages probably just want lists.

AST structure almost a direct translation of the grammar.

Abstract vs. Concrete Trees

expr : mexpr ("+" mexpr)* ;

mexpr : atom ("*" atom)* ;

atom : INT ;

3 + 5 * 4

expr

mexpr

atom

INT:3

”+” mexpr

atom

INT:5

”+” atom

INT:4

+

INT:3 *

INT:5 INT:4

Concrete Parse Tree Abstract Syntax Tree

Implementing ASTs

Most general implementation: ASTs are n-ary trees.

Each node holds a token and pointers to its first child and
next sibling:

Parent

Last Sibling Node Next Sibling

First Child

Example of AST structure

if

>

a b

-=

a b

-=

b a

if

> -= -=

a b a b b a

Typical AST Operations

Create a new node; Append a subtree as a child.

> -=

a b a b

+ -=

b a

=

> -= -=

a b a b b a

Comment on Generic ASTs

Is this general-purpose structure too general?

Not very object-oriented: whole program represented with
one type.

Alternative: Heterogeneous ASTs: one class per object.

class BinOp {

int operator; Expr left, right;

};

class IfThen {

Expr predicate; Stmt thenPart, elsePart;

};

Heterogeneous ASTs

Advantage: avoid switch statements when walking tree.

Disadvantage: each analysis requires another method.

class BinOp {

int operator; Expr left, right;

void typeCheck() { ... };

void constantProp() { ... };

void buildThreeAddr() { ... };

};

Analyses spread out across class files.

Classes become littered with analysis code, additional
annotations.

Comment on Generic ASTs

ANTLR offers a compromise:

It can automatically generate tree-walking code.

→ It generates the big switch statement.

Each analysis can have its own file.

Still have to modify each analysis if the AST changes.

→ Choose the AST structure carefully.

Building ASTs

The Obvious Way to Build ASTs

class ASTNode {

ASTNode(Token t) { ... }

void appendChild(ASTNode c) { ... }

void appendSibling(ASTNode C) { ... }

}

stmt returns [ASTNode n]

: ’if’ p=expr ’then’ t=stmt ’else’ e=stmt

{ n = new ASTNode(new Token("IF"));

n.appendChild(p);

n.appendChild(t);

n.appendChild(e); } ;

The Obvious Way

Putting code in actions that builds ASTs is traditional and
works just fine.

But it’s tedious.

Fortunately, ANTLR can automate this process.

Building an AST Automatically with
ANTLR

class TigerParser extends Parser;

options {

buildAST=true;

}

By default, each matched token becomes an AST node.

Each matched token or rule is made a sibling of the AST
for the rule.

After a token, ˆ makes the node a root of a subtree.

After a token, ! prevents an AST node from being built.

Automatic AST Construction

Running

class CalcParser extends Parser;

options { buildAST=true; }

expr : mexpr (’+’ mexpr)* EOF ;

mexpr : atom (’*’ atom)* ;

atom : INT ;

on

2*3+4*5+6

gives

2 * 3 + 4 * 5 + 6 EOF

AST Construction with Annotations

Running

class CalcParser extends Parser;

options { buildAST=true; }

expr : mexpr (’+’ˆ mexpr)* EOF! ;

mexpr : atom (’*’ˆ atom)* ;

atom : INT ;

on

2*3+4*5+6

gives

+

+ 6

* *

2 3 4 5

Choosing AST
Structure

Designing an AST Structure

Sequences of things

Removing unnecessary punctuation

Additional grouping

How many token types?

Sequences of Things

Comma-separated lists are common

int gcd(int a, int b, int c)

args : "(" (arg ("," arg)*)? ")" ;

A concrete parse tree:

args

(,

,

arg

int a

arg

int b

arg

int c

)

Drawbacks:

Many unnecessary nodes

Branching suggests recursion

Harder for later routines to get
the data they want

Sequences of Things

Better to choose a simpler structure for the tree.

Punctuation irrelevant; build a simple list.

int gcd(int a, int b, int c)

args : "("! (arg (","! arg)*)? ")"!

{ #args = #([ARGS], args); } ;

ARGS

arg

int a

arg

int b

arg

int c

What’s going on here?

args : "("! (arg (","! arg)*)? ")"!

{ #args = #([ARGS], args); } ;

Rule generates a sequence of arg nodes.

Node generation supressed for punctuation (parens,
commas).

Action uses ANTLR’s terse syntax for building trees.

{ #args = #([ARGS] , args) ; } ;

“set the args tree to a new tree whose root is a node of
type ARGS and whose child is the old args tree”

What’s going on here?

(int a, int b, int c)

args : "("! (arg (","! arg)*)? ")"!

{ #args = #([ARGS], args); } ;

#args
arg arg arg

int a int b int c

#args ARGS

arg arg arg

int a int b int c

Removing Unnecessary
Punctuation

Punctuation makes the syntax readable, unambiguous.

Information represented by structure of the AST

Things typically omitted from an AST

• Parentheses

Grouping and precedence/associativity overrides

• Separators (commas, semicolons)

Mark divisions between phrases

• Extra keywords

while-do, if-then-else (one is enough)

Additional Grouping

The Tiger language from Appel’s book allows mutually
recursive definitions only in uninterrupted sequences:

let

function f1() = (f2()) /* OK */
function f2() = (...)

in ... end

let

function f1() = (f2()) /* Error */
var foo := 42 /* splits group */
function f2() = (...)

in ... end

Grouping

Convenient to group sequences of definitions in the AST.

Simplifies later static semantic checks.

let

function f1() = (...)

function f2() = (...)

var foo := 42

in ... end

defs

func

f1 . . .

func

f2 . . .

var

foo . . .

defs

funcs

func

f1 . . .

func

f2 . . .

vars

var

foo . . .

Grouping

Identifying and building sequences of definitions a little
tricky in ANTLR.

Obvious rules

defs : (funcs | vars | types)* ;

funcs : (func)+ ;

vars : (var)+ ;

types : (type)+ ;

are ambiguous: Maximum-length sequences or
minimum-length sequences?

Grouping

Hint: Use ANTLR’s greedy option to disambiguate this.

The greedy flag decides whether repeating a rule takes
precedence when an outer rule could also work.

string : (dots)* ;

dots : (".")+ ;

When faced with a period, the second rule can repeat
itself or exit.

The Greedy Option

Setting greedy true makes “dots” as long as possible

string : (dots)* ;

dots : (options greedy=true; : ".")+ ;

Setting greedy false makes each “dots” a single period

string : (dots)* ;

dots : (options greedy=false; : ".")+ ;

How Many Types of Tokens?

Since each token is a type plus some text, there is some
choice.

Generally, want each “different” construct to have a
different token type.

Different types make sense when each needs different
analysis.

Arithmetic operators usually not that different.

For the assignment, you need to build a node of type
“BINOP” for every binary operator. The text indicates the
actual operator.

Walking ASTs

Walking ASTs with ANTLR

ANTLR can build “tree parsers” as easily as token parsers.

Much simpler: tree structure is already resolved.

Simple recursive recursive walk on the tree.

Matches are sufficient, not exact.

(Cheaper to implement.)

#(A B) also matches the larger tree
#(A #(B C) D)

Walking ASTs with ANTLR

class CalcParser extends Parser

expr : mexpr ("+"ˆ mexpr)* ;

mexpr : atom ("*"ˆ atom)* ;

atom : INT | "(" expr ")" ;

class CalcWalker extends TreeParser

expr returns [int r]

{ int a,b; r=0; }

: #("+" a=expr b=expr) { r = a + b; }

| #("*" a=expr b=expr) { r = a * b; }

| i:INT { r = parseInt(i.getText()); }

;

Walking ASTs with ANTLR

class CalcWalker extends TreeParser

expr returns [int r]

{ int a,b; r=0; }

: #("+" a=expr b=expr) { r = a + b; }

| #("*" a=expr b=expr) { r = a * b; }

| i:INT { r = parseInt(i.getText()); }

;

This walker only has one rule: grammar had three.

Fine: only structure of tree matters.

Walking ASTs with ANTLR

: #("+" a=expr b=expr) { r = a + b; }

| #("*" a=expr b=expr) { r = a * b; }

| i:INT { r = parseInt(i.getText()); }

;

The highlighted line says

Match a tree #(...)

With the token "+" at the root

With two children matched by expr

(Store their results in a and b)

When this is matched, assign a + b to the result r.

Comments on walking ASTs

Tree grammars may seem to be ambiguous.

Does not matter: tree structure already known

Unlike proper parsers, tree parsers have only one token of
lookahead.

Must be possible to make a decision locally.

Has impact on choice of AST structure.

Comments on walking ASTs

Optional clauses can cause trouble.

Place them at the end.

stmt

: #("if" expr stmt (stmt)?) // OK

| #("do" (stmt)? expr) // Bad

;

First rule works: can easily decide if there is another child.

Second rule does not: not enough lookahead.

Comments on walking ASTs

Lists of undefined length can also cause trouble

funcdef

: #("func" ID (arg)* stmt)

;

Does not work because the tree walker does not look
ahead.

Solution: use a subtree

funcdef

: #("func" #("args" (arg)*) stmt)

;

The placeholder resolves the problem.

Rewriting Trees with
ANTLR

Rewriting Trees

Much of compiling is refining and simplifying:

Discarding unnecessary information

Reducing high-level things to low-level ones

How to implement this depends on the representation.

Trees are fairly natural: replace one or more children.

ANTLR tree walkers can do semi-automatically.

Rewriting Trees with ANTLR

In the parser, buildAST=true adds rules that
automatically builds an AST during parsing.

In a tree walker, buildAST=true adds code that
automatically makes a copy of the input tree.

This is actually useful because you can selectively disable
it and generate your own trees.

Rewriting Trees with ANTLR

An example: Replace x+0 with x.

First, make a copying TreeParser:

class FoldZeros extends TreeParser;

options {

buildAST = true;

}

expr

: #("+" expr expr)

| #("*" expr expr)

| INT

;

Rewriting Trees with ANTLR

Next, disable automatic rewriting for the + operator and
add a manual copy.

Adding ! before a subrule disables AST generation for
that subrule.

Tree generation is like that in parsers.

expr

:! #(PLUS left:expr right:expr)

{ #expr = #(PLUS, left, right); }

| #(STAR expr expr)

| i:INT

;

Rewriting Trees with ANTLR

Finally, check for the x+0 case.

expr

:! #(PLUS left:expr right:expr)

{

if (#right.getType()==INT &&

Integer.parseInt(#right.getText())==0)

#expr = #left;

else

#expr = #(PLUS, left, right);

}

| #(STAR expr expr)

| i:INT

;

Complete Example

class CalcTreeWalker extends TreeParser;

options { buildAST = true; }

expr

:! #(PLUS left:expr right:expr) {

if (#right.getType()==INT &&

Integer.parseInt(#right.getText())==0)

#expr = #left;

else #expr = #(PLUS, left, right);

}

| #(STAR expr expr)

| i:INT

;

Examples of Tree Rewriting

This was incomplete: should do 0+x case, too.

General constant folding: replace constant arithmetic
expressions with their results.

Must do this carefully: watch for overflow, imprecision.

Tricky to do correctly for integers, virtually impossible for
floating-point.

Cross-compilation problem: how do you know the
floating-point unit on your target machine behaves exactly
like the one where you’re compiling?

Examples of Tree Rewriting

Change logical operators && and || to if-then statements.

if (a && b && c || d && e) { ... }

if (a) {

if (b)

if (c)

goto Body;

} else if (d)

if (e) {

Body: ...

}

}

Examples of Tree Rewriting

Dismantle loops into gotos.

while (a < 3) {

printf("a is %d", a);

a++;

}

Becomes

goto Continue;

Again:

printf("a is %d", a);

a++;

Continue:

if (a < 3) goto Again;

