
Java and C Performance Comparison on Palm OS

Zhi-Kai Xin
zxin@cs.columbia.edu

Abstract

This paper investigates the performance comparisons
of Java and C on Palm OS PDA device. The
performance comparison concentrates on the memory
management and the numerical computation of both
languages. Execution time and memory usage are
used as the measurements. The modern PDA and
wireless devices offer powerful applications, so the
choice of using Java or C becomes very important.
This paper also addresses the doubt on whether Java
is an acceptable embedded system language.

1 Introduction

Java has gained popularity over last couple years. It
is no longer a web language. Many back-end servers
have deployed with Java technologies. With the
introduction of Java 2 Enterprise Edition (J2EE) on
existing Java 2 Standard Edition (J2SE), Java has
become the only E-commerce solution. The standard
Java library APIs offer fast and easy application
development. The portability of Java code allows the
evolvement and enhancement of software. Java’s
memory management provides automatic garbage
collection that allows safe software development.
Modern computing has put more focus towards
Personal Digital Assistance and wireless phone
devices. Typical PDA device contains calculator,
memo pad and calendar applications. Other high-end
PDA contains mpeg and mp3 players. These
applications need both powerful hardware and
software support. In the current market, PDA uses
Palm OS, Pocket PC, and Window CE as the most
popular embedded OS. This project chooses Palm OS
power PDA because Palm OS offers more
development tools and Opensource software. Both
Java and C runs on Palm OS based PDA devices.
There are many literature surveys on C/C++ and Java
performance comparison. Although C offers better
memory usage and execution time performance but
Java’s performance has been improved with newer
releases and implementations of the JVM. Just-in-
time (JIT) Java compiler for the latest J2SE can turn

Java byte-code into native machine code during
runtime, so it can significantly speed up Java
performance. Many researches have also suggested
that by rewriting some of the existing Java software
in more efficient manner can greatly improve the
Java performance. Sun Microsystems offers Kilo-
byte Virtual Machine (KVM) for Palm OS powered
PDA devices. KVM is a stripped down version of
JVM. The project measures the performance of Java
and C running on Palm OS. The performance is
measured in terms of memory usage and execution
speed. Does Java offer acceptable performance on
Palm OS based PDA device? What improvements
can be done from programmer side? These are the
main questions the paper tries to address. The rest of
the paper is organized as follows – Section 2
describes some existing related works. Section 3
describes the project plan.

2 Related Works

2.1 KVM for Palm OS

In June 1999, Sun Microsystems released Java 2
Micro Edition1 (J2ME). It is targeted for PDA and
wireless devices where power consumption and
memory are very stringent. J2ME is divided into
following layers [1][2][3]:

• Kilobyte Virtual Machine (KVM).
• Configurations. Connected Device

Configuration (CDC), Connected Limited
Device Configuration (CLDC).

• Profiles. Mobile Information Device Profile
(MIDP).

KVM is a slim version of JVM that requires about 80
Kilobyte of memory. Java byte code such as .class
or .jar files can be run on KVM. CLDC defines the
standard Java platform for wide range of PDA and
wireless devices. CLDC is also the specification of
JVM that can be run on particular range of devices

1 http://java.sun.com/j2me/

[2]. It is also responsible for delivery of Java
applications to the devices. MIDP is more specific
subset of CLDC targeting particular kind of PDA or
wireless devices. MIDP is the Sun Microsystems’
JVM implementation targeting Palm OS devices.
ChaiVM of HP is a JVM targeting Pocket PC based
PDA devices. KVM differs from JVM that it lacks of
following features [1]:

• Floating Point Math. No float variable.
• Java Native Interface (JNI).
• Custom Class Loader.
• Reflection and Introspection.
• Thread Groups.
• Finalization.

Typical architectural hierarchy of J2ME looks like:

MIDP
CLDC
KVM

Host Operating System

 Figure 1. J2ME architecture

Developer should directly interact with MIDP library.
The Host Operating System is Palm OS in this
project.

2.2 Smart Object Management

Sosnoski [4] analyzed the performance of Java and
C/C++ with various compilers and JVM
implementations. The results showed that C
outperforms Java in memory usage and execution
speed. Java’s automatic memory management
handles all the memory allocation and de-allocation
without developer’s intervention but it also creates an
extra overhead to the Java software. Due to this extra
overhead, Java object’s memory usage is rather very
high [4]:

 Figure 2 memory usage in (bytes)

According to Sosnoski [4], different JVM
implementations show very unique memory
allocation usages. Newer version of JVM does give
much better performance. Memory usage is only one
problem with Java object. Its allocation time is also
worth notice [4]:

 Figure 3 Memory Management Performances
 (time in seconds)

According to Figure 3, the memory allocation time of
C/C++ is apparently much better than Java, although
newer version of JVM does give more acceptable
memory allocation time. In order to improve Java
performance, Sosnoski [4] suggested modifying the
Java code to use more primitive Java types instead of
Java objects. Java contains primitive types of boolean,
byte, char, double, float, int, long, and short.
Developer should avoid using their wrapper classes
such as Integer, Double, Long, Short, etc… Wrapper
class represents immutable values of the
corresponding primitive types, which give extra
memory and performance overhead [4]. Utilities
classes such as java.util.Vector and
java.util.Hashtable should also be avoided as much as
possible since each element must contain a Java non-
primitive object or custom object. For instance,
java.awt.Point class is used to represent a ‘point’
such as x and y coordination. Sosonoski [4]
suggested using Java primitive type long to represent
a Point. Since long is 64 bit in size so the higher bits
can represent x coordinate while the lower bits can
represent y coordinate2. Sosnoski [4] also suggested
using dedicated object reuse and object pool concepts
to avoid creating new object every time when the
object is used very frequently. Database connection
object or file descriptor object should only be created
once and rest of the program should just reuse those
objects without re-creating them again.

2.3 Benchmark test for Java and C/C++

2 For code example on representing Point with long,
see http://www.javaworld.com/javaworld/jw-11-1999/jw-

11-performance.html

 Content
(bytes)

JRE
1.2.2
(Classic)

JRE
1.2.2
(Hotspot
2.0
beta)

java.lang.object 0 28 18
java.lang.Integer 4 28 26
Int[0] 4 28 26
java.lang.String
(4 characters)

8+4 60 58

 JRE 1.2.2
(Classic)

JRE 1.2.2
(Hotspot 2.0
beta)

C/C++

331MB 26 14 9

Sosnoski [5] carried out series of benchmark testing
on various Java compilers and JVM implementations
such as HotSpot JVM and IBM win32 JRE. The
benchmark test areas include:

• Basic numerical computation
• File I/O
• Memory management
• Typecasting overhead
• Multi-thread and Synchronization

The benchmark test results showed C/C++ definitely
outperforms Java in many aspects. But newer version
of Java compiler and JVM does improve the overall
Java performance. IBM win32 JRE actually
outperforms C/C++ in numerical computation by
small percentage.

2.4 Numerical Computation

Moreira et al. [6] compared the matrix multiplication
benchmark test with Java, C/C++ and FORTRAN.
Here are the results:

 Figure 4. Performance measured in Mflops

FORTRAN and C/C++ clearly outperform Java in
matrix computation. The matrix is implemented using
array in all three languages. Java has an overhead of
array checking where extra code is inserted to test
array boundary and array index validity. Java throws
indexOutOfBound exception if the software tries to
access invalid array index or null array. Another
problem is that Java does not have true
multidimensional array, instead it has array of arrays.
C/C++ and FORTRAN use true multidimensional
array so the indexing is much faster. Moreira et al. [6]
proposed to disable Java runtime array checking
mechanism and Java’s matrix multiplication
performance got 15-fold improvement. Many Java
runtime features must be left out in order to improve
the overall performance.
 Boisvert et al. [7] also pointed out the problems of
multidimensional array with Java in numerical
computation. Getting rid of Java runtime array
checking was the solution proposed to improve the

matrix multiplication performance. Complex number
is also popular in numerical computation, Java
implementation of complex number incurs overhead
of object accessing. Boisvert et al. [7] presented a list
of Do’s and Don’ t for numerical computation in Java
in order to improve its performance:

• Do use latest and modern JVM
• Do alias multidimensional array that is turn

A[i][j][k] to Aij[k]
• Do declared local variable in innermost scope.

That is for (int i=0; …)
• Do use += rather than + semantics to reduce

the temporary variables.
• Don’ t create/destroy little objects in

innermost loops; Java GC3 slows thing.
• Don’ t use java.util.Vector in numerical

computation.

Boisvert et al. [7] carried out series of SciMark 4
benchmark test on 500-MH Intel PIII running Win98.
The results actually showed that Java (Sun 1.2 and
IBM 1.1.8) outperforms C (Borland 5.5 and MS
VC++ 5.0) with optimization. Java’s performance is
correlated to JVM implementation rather than
underlying hardware [7].

2.5 J2ME: Real-world performance

Yi et al. [10] performed series of benchmark test on
various PDA and wireless devices with J2ME. Each
device is loaded with CLDC 1.0 and MIDP 1.0. The
benchmark test includes: JKernelMark, JAppsMark
and JXMLMark. JKernelMark is set of test drivers
for testing KVM implementation while JAppsMark
and JXMLMark are for applications. The
JKernelMark benchmark includes basic numerical
computation, string manipulation, memory
management, and method calls. The benchmark test
results can be found at:
http://www.javaworld.com/javaworld/jw-10-
2002/images/jw-1025-j2mebenchmark4.gif
Different JVM implementations actually give rather
wide range of performances.

2.6 Garbage Collection in Embedded System

3 Garbage Collector
4 SciMark is benchmark from National Institute of
Standards and Technology, http://math.nist.gov/SciMark.

Matrix size Java C/C++ FORTRAN

64x64 2.2 137.6 205.4
500x500 1.6 91.1 193.3

Chent et al. [11] performed set of experiment on
relationship between garbage collection and energy
consumption on Palm OS device. KVM uses mark
and sweep style garbage collection algorithm. Overall
the experiment showed that frequent garbage
collection actually consumes less energy while it may
impact application performance.

3 Project Plan

The purpose of the project is to compare runtime
performance of Java and C on Palm OS device. Many
of the previous Java and C/C++ works were
performed either on Unix or Window machines
where processor speed, memory and power are
plentiful. One of the main challenges of this project is
getting complicated algorithm programs running on
the low power, stringent physical memory and
limited processor speed PDA device. Three questions
should be answered by end of this project: which
language has better runtime performance on
embedded PDA device, Java or C? If Java’s
performance is poorer than C on PDA device, how
bad is it? Is there any future improvement could be
made either on the JVM itself or the software written
in Java? Java has many useful features that ease the
programmer’s responsibility to produce safe and
robust software. Sometimes these useful features
have to be sacrificed in order to boost up Java
performance. For instance Java array and garbage
collection are useful but also incurring huge runtime
overhead.

3.1 Target test environment

Benchmark test is carried out on Palm IIIxe with
Palm OS 3.5 and 8MB of physical memory. Sun
Microsystems KVM is used as JVM.

3.2 Development environment

Development is carried out under Intel PIII 700-MH
Win98. Require Java software’s are JDK1.4 and
J2ME (CLDC 1.0 and MLDP 1.0). Require C
software’s are Cygwin emulator with GCC and PRC-
TOOL [14] for Palm OS.

3.3 Benchmark test

The performance measurement is based on the
execution time and memory usage. Below are list of
benchmark test programs that should be performed
on the Palm IIIxe5:

• Basic numerical computation
o Multidimensional matrix computation
o Factorial to find prime numbers [5]
o Fibonacci algorithm
o JKernelMark benchmark [10]
o SpecJVM98 benchmark [8][12][13]

• Memory management
o Java primitive type vs. Java object [4]
o Array with or without runtime checking
o Array vs. java.util.Vector
o Object reuse and object pool
o Type-cast vs. no type-cast
o String and StringBuffer
o SciMark [9]

Neither Java nor C can claim to be the only best
language for embedded environment development.
Java and C each has its advantages and disadvantages.
Java’s rich set of library and its runtime checking
make development much faster and produce robust
software while suffering performance issues. C on
the other hand relies more on the developer’s coding
skills and language knowledge such as manual
allocation and de-allocation of memory where
development takes much longer and produce error-
prone software while honoring with its excellent
performance. There are trade offs on using either
Java or C. It is up to developer deciding which
language will benefit the most.

References

[1] John W. Muchow. Core J2ME Technology &

MIDP. Prentice Hall PTR, Saddle River, NJ,
2002.

[2] Sumi Helal. Standard, Tools, & Best Practices.
Pervasive Computing, ACM, January, 2002.

[3] Java 2 Platform Micro Edition (J2METM)
Technology for Creating Mobile Device. White
paper. Sun Microsystems, May 19, 2000.

[4] Dennis M. Sosnoski. Java performance
programming, Part 1: Smart object-
management saves the day. Java World,

5 Eventual list may vary little depending on actual
implementation and time constraints.

November 1999.
http://www.javaworld.com/javaworld/jw-11-
1999/jw-11-performance.html

[5] Dennis M. Sosnoski. Java Performance
Comparison with C/C++. Sosnoski Software
Solution, Inc. This report was presented in
1999 JavaOne conference.
http://www.sosnoski.com/Java/Compare.html

[6] J. E. Moreira, S. P. Midkiff, and M. Gupta. A
Comparison of Java, C/C++, and FORTRAN
for Numerical Computing. IEEE Antennas and
Propagation Magazine, Vol. 40, No. 5, October
1998.

[7] Ronald F. Boisvert, Jose Moreira, Michael
Philipensen, Roldan Pozo. Java and Numerical
Computing. Computing in Science &
Engineering. March, 2001.

[8] Java Grande Forum. Improve Java
Performance. http://www.javagrande.org

[9] SciMark. Java benchmark by NIST.
http://math.nist.gov/SciMark

[10] Wang Yi, C. Y. Reddy, Gavin Ang. J2ME
device: Real-world performance. Java World.
March 25, 2002.
http://www.javaworld.com/javaworld/jw- 10-
2002/jw-1025-j2mebenchmark.html

[11] G. Chent, R. Shetty, M. Kandemirt, N.
Vijaykrishnant, M. J. Irwint, and M. Wolczkot.
Tuning Garbage Collection in an Embedded
Java Environment. In Proc. Eight International
Symposium on High-Performance Computer
Architecture. 2002

[12] More detail on Java and C benchmark.
 http://www.spec.org
[13] David A. Cargill, Mohammad Radaideh. A

Practitioner Report on the Evaluation of the
Performance of The C, C++ and Java
Compilers on the OS/390 Platform.

[14] Neil Rhodes, Julie McKeeban. Palm OS
Programming. The Developer’s Guide, 2nd
Edition. O’Reilly & Associates Inc. 2002.

