Java and C Performance Comparison
on Palm OS PDA device

= Basic numerical computation

example: Multidimensional matrix computation

» Memory management

example: Java primitive type vs. Java Object

» SpecJVM98, SciMark and JkernelMark
official benchmarks

s Measure in execution time and
memory usage

Zhi-Kai Xin
CS4995 Embedded System zxin@cs. columbia.edu

The project will compare the runtime performance of Java and C on
Palm OS device. | like to perform series of numerical computation and
memory management benchmark test with Java and C in resource
limited embedded system. | will concentrate on the execution speed in
millisecond and memory usage in bytes of Java and C programs.

Motivation

= Java is widely adopted in embedded
system to develop various applications

= PDA, wireless phone, and game console
= Java is easy to learn and powerful

» Rich set of library

= Platform independent

= Easy integration

Zhi-Kai Xin
CS4995 Embedded System zxin@cs. columbia.edu

Java is already used widely for many real-world applications because its
fast development cycle and easy integration. And PDA and Wireless
devices are becoming popular, so Java should be considered for
development on those devices. But | like to find if Java’s performances
are acceptable or not on those resource limited PDA devices.

Motivation cont.

= Popular JVM for PDA or Wireless device

= Sun Microsystems J2ME (KVM)
« CLDC and MIDP for Palm OS 3.5+

« IBM J9 VM
= HP ChaivM
» iPAQ Personallava (Jeoda)

= C uses Cygwin with PRC-TOOL or
CodeWarrior for PDA application development

Zhi-Kai Xin
CS4995 Embedded System zxin@cs. columbia.edu

Here are some of the popular Java Virtual Machine available for some
of popular PDA and Wireless devices.

Different embedded JVM has its own specification and gives different
performance output on the PDA devices.

Related works

m Sosnoski 11121 Java and C/C++
performance comparison and analysis

» Java object allocation wastes memory
space and takes too long

» But improvement can be made by using
primitive types instead of Java object

= Use array instead of java.util.Vector
» Avoid creating new object in large software

Zhi-Kai Xin
CS4995 Embedded System zxin@cs. columbia.edu

Dennis Sosonoski carried out series of experiment on comparing Java
and C performance.

His results showed that Java performance can be improved if Java
program is carefully written such that use Java primitive types as much
as you can, avoid using java.util.Vector, avoid creating new object
whenever you can.

Avoid recursion, avoid array access within loops.

Related works cont.

= Moreira et al. 33 numerical computation

= Multidimensional matrix addition and
multiplication

= Java Array incurs overhead of runtime
checking.

» Java multidimensional array is array of
arrays (slower indexing)

» Java outperforms C if Java array runtime
checking is disabled

Zhi-Kai Xin
CS4995 Embedded System zxin@cs. columbia.edu

Moreira et al. carried out series of matrix computation experiment for
Java, C and FORTRAN. FORTAN and C clearly outperforms Java in
the experiment. But Java performance can be improve if Java array
runtime checking is disabled.

Questions to be answered by end
‘ of this project
= Which language has better performance
on Palm OS PDA device, Java or C?

= If C is better, how bad is Java’s
performance on PDA? Is it acceptable
performance?

= What improvements can be made to
Java to run better on PDA?

Zhi-Kai Xin
CS4995 Embedded System zxin@cs. columbia.edu

Most of the existing works compared Java and C/C++ performance on
Unix or Window machines. My experiment will expand on those existing
works by carrying out the similar benchmark test in embedded system
such as Palm OS device. Hopefully | can answer these questions by
end of the project.

Development Environment

= Sony Clie (Palm OS Device)
» 33MHz
= 16MB RAM
= Java Development IDE
» Java wireless toolkit
« CodeWarrior

Zhi-Kai Xin
CS4995 Embedded System zxin@cs. columbia.edu

For development, | have used Java Wireless Toolkit and CodeWarrior.

The benchmark tests were carried out under Sony Clie, itis a Palm OS
based PDA device

* Results and Analysis

Columbia University

CS4995-2 Embedded

System Project

Presentation Zhi-Kai Xin

| have carried out some benchmark tests in Java and C on Sony Clie
PDA device.

| will now talk about some of the significant results.

| Looping

Double Loop Test
100000

50000 /’«I
(o J A AREEEY AR A} VM

© SR SV S PR N SR
'\,fb"’b,\j,,ﬁog\,@,\g@m

Timein
Millisecond

Number of Iteration (Figure 5)

—&— Java Un-optimized —8— Java Optimized C

CS4995 Embedded System zxin@cs. columbia.edu

The experiment is setup as follow:

Two nested ‘For loops’ are setup and some calculations are performed
within the loops.

Obviously C has the fastest looping execution time.

But Java can be improved by rewriting the loops, basically take out any
un-necessary array access or un-necessary functions calls within the
loops. Thus the pink line in the graph shows significant performance
improvement.

Array in java has the overhead of runtime array bound checking, thus
taking them out will improve the

Performance

So with some careful tuning, Java performance can be significantly
improved.

Array Copy

Array Copy Test
s 10
c
S 50
(]
k%)] []
= 30
= _
c
£ 10
o oo o L
F -10 1632 64 128 256 512 600 700 1024

Size of Array (Figure 6)

O Java Loop Array Copy B Java System Array Copy O C Array Copy

Zhi-Kai Xin
CS4995 Embedded System zxin@cs. columbia.edu

To copy array in Java, it is much faster to use Java’s system.arraycopy
method than using loop.

Since Java has a rich set of build in APIs, programmer should take
advantage of it. Most Java system methods are very efficiently
implemented.

So Java program can carefully tuned to match up with C’s performance.

In fact, when size of array are 700 and 1024, the performance of Java
and C are almost same(see figure above)

Hashing

Hashing Test

3000

2000
1000
O T 1 [L L T T T T

16 32 64 128 256 512 600 700 800 900

Time in
millisecond

Number of hashing (Figure 7)

—e— Java No Object Pooling —a— Java Object Pooling
C Hashing

Zhi-Kai Xin
CS4995 Embedded System zxin@cs. columbia.edu

Java object pooling is a way to reuse most frequent used object in the
program.

For example, to use Java’s build in Hashtable API, rehashing is needed
when there is a collision in inserting the new key, so new Hashtable
object will be created and the old object has to be garbage collected, so
it slows down the whole process. Instead a large global hashtable
should be created to avoid rehash, thus avoiding allocation of new
hashtable object and garbage collection.

As the graph shows, the java object pooling implementation of the
hashing has compatible performance as C.

11

String concatenation

String Contenation Test

1000

500

Time in
millisecond

Number of concatenation (Figure 8)

—e—Java —8—C

Zhi-Kai Xin
CS4995 Embedded System zxin@cs. columbia.edu

Java string library APIs are very useful.

Java string concatenation is done at the compilation time, thus its
performance is better than C

C uses strcpy and strcat of character pointers to implement string
concatenation during runtime.

12

Java Factorial Test

2 150

(o]

3

o 100

E 50

£

(]

E 04

= 40 50 80 100 200 300 400 500 600 700 900
Factorial Input (Figure 10)
O Recursion m While Loop

Zhi-Kai Xin
CS4995 Embedded System zxin@cs. columbia.edu

Factorial can be implemented in either recursion or while loops.

Implementing factorial in while loop for Java yields better performance
than using recursion.

C’s data is not shown, because C’s factorial program throws
stackoverflow error on my PDA device due to the fact that Palm OS has
only 2.5KB of stack size.

Conclusion

rmance can be improved by

fine tune Java program such as:

= Avoid recursion

» Avoid having array access within nested
loops

= Use object pooling, avoid create new
object, thus avoid garbage collect,
especially within loops

= Try use Java’s build in methods, avoid re-
writing your own routines

Zhi-Kai Xin
CS4995 Embedded System zxin@cs. columbia.edu

14

Conclusion cont.

= Java has a rich set of APIs for fast
development

= Definitely worth to use on PDA device
software development

Zhi-Kai Xin
CS4995 Embedded System zxin@cs. columbia.edu

With carefully written Java program, the runtime performance of Java
can be close enough to C’s runtime performance.

15

Future works

|
» Look into Java’s I0 and network

performance on PDA devices

Zhi-Kai Xin
CS4995 Embedded System zxin@cs. columbia.edu

16

Source code

|
The project source code can be found at:

http://www.cs.columbia.edu/~zxin/cs499
5-2/final/project

Zhi-Kai Xin
CS4995 Embedded System zxin@cs. columbia.edu

17

References

= [1] Dennis M. Sosnoski. Java performance programming, Part 1. Smart
object-management saves the day. Java World, November 1999.
http://www.javawor|d.com/javawor| d/jw-11-1999/jw-11-
performance.html
[2] DennisM. Sosnoski. Java Performance Comparison with C/C++.
Sosnoski Software Solution, Inc. Thisreport was presented in 1999
JavaOne conference. http://www.sosnoski.com/Java/Compare.html
[3] J E. Moreira, S. P. Midkiff, and M. Gupta. A Comparison of Java,
C/C++, and FORTRAN for Numerical Computing. |EEE Antennas
and Propagation Magazine, Vol. 40, No. 5, October 1998.

Zhi-Kai Xin
CS4995 Embedded System zxin@cs. columbia.edu

18

