Parallel Port Device Drivers:

A Study in Driver Creation

Noel Vega
Languages for Embedded Systems Design, Fall, 2002

December 16, 2002

Abstract

If monitors, mice, keyboards, and other computer
peripherals could talk to any given computer di-
rectly, there would be no compatibility issues be-
tween hardware and operating systems. Unfortu-
nately, such a nirvana does not yet exist. As such,
computer users are left to deal with device drivers
- hard to decipher pieces of code designed to al-
low peripherals to “communicate” with the operat-
ing system and transfer direction to and from the
computer. The complexity of device drivers, how-
ever, makes it very difficult to begin a process of
automating their creation.

This paper looks into parallel port drivers in
Linux, Free-BSD, Windows 2000, and Windows
NT, deciphering the code to arrive at a generalized
driver structure for the four operating systems and,
ultimately, a set of “pseudo” device drivers for the
operating systems. By clearly understanding the
structure of a device driver, it becomes a lot easier
to attack the problem of automating its creation,
which in turn will make it easier for users to install
hardware on any machine.

1 Introduction

Computer science has been brought to the point
where computers are everywhere in society. Cer-
tainly, the hardware used to perform the various
tasks required of computers needs a means of com-
munication with the computer. This becomes a
great strain on hardware manufacturers, who are
charged with the task of writing drivers for their
hardware for each operating system (specifically,
for each wersion of each operating system) they
wish their hardware to be compatible with. Given
the difficulty of writing device drivers, this can of-
ten lead to complications with drivers; since a new

driver needs to be written for each device and for
each OS version, there are bound to be compli-
cations with drivers. In fact, Wang, Malik, and
Bergamaschi cite a Microsoft report regarding Win-
dows XP which “shows that 61% of XP crashes are
caused by driver problems.” [7, 1] Clearly, a bet-
ter understanding of device driver creation is called
for.

While there are plenty of device drivers avail-
able, there are surprisingly few papers regarding the
structure of a device driver. This paper aims to fill
this gap, describing driver structures in enough de-
tail to lend to the potential automation of their cre-
ation in the future. Such automation would clearly
reduce problems with driver creation, perhaps even
in an exponential fashion. At a bare minimum, it
is useful - and important - to make a clear under-
standing of device drivers and their operation avail-
able to potential driver writers, who may in turn aid
hardware manufacturers in creating drivers while
the automation process is created.

2 Related Work

A field such as device driver creation, which has
shown its purpose for a long time, has a rich his-
tory of related work. In hopes of furthering the
understanding of the structure of device drivers,
Viscarola and Mason offer a comprehensive man-
ual on writing device drivers for Windows NT for
“software engineers who have never written a device
driver...those who have written drivers on other
operating systems, and even. . . engineers who have
already written a few drivers on Windows NT.” [8,
1] Clearly, this is a problem even for the most sea-
soned driver programmer.

While a good deal of time is spent on writing
device drivers, there is a growing interest in re-
ducing the amount of time and energy spent writ-

Parallel Port Drivers

ing device drivers. This is best accomplished ei-
ther 1) through writing so-called “universal” de-
vice drivers, or 2) studying the possibility of driver
automation. An example of a “universal” device
driver is Thesycon’s Universal Parallel Port Driver
for Windows[4], which is designed to be precisely
that: a driver for parallel ports designed to work
for Windows N'T 4.0, Windows 2000, and Windows
XP. More interestingly, however, is the strive to
automate driver creation. The process described
by Wang, Malik, and Bergamaschi[7] aims to syn-
thesize a platform-independent device driver from
specified device behavior.

3 Methodology

As outlined above, the focus of this paper is to
examine differences in driver structures across dif-
ferent platforms, namely Windows 2000, Windows
NT, FreeBSD, and Linux. Since there are so many
possible drivers available, not to mention so many
categories for different drivers, I have decided to
examine specifically parallel port drivers. These
drivers, while not as large as many other device
drivers, certainly display the general structure of
device drivers for each of the specified platforms.
A parallel port driver is far from a trivial exam-
ple; printers, scanners, and disks are examples of
the various pieces of hardware which utilize par-
allel ports[9, 6]. However, the operation is quite
simple: there is a two-way byte channel, sending
information to the hardware and receiving infor-
mation from it. Even where a piece of hardware
handles only input (a scanner) or only output (a
printer), there is still two-way communication. For
example, a scanner may only be reading informa-
tion and sending it to a program for handling, but
information still goes out to it to tell it to scan, or
that the program is ready to go. Likewise, a printer
may only output information to paper, but it will
transmit information to the OS to let it know it is
ready for the next job, or that there is a problem,
etc.

4 Results

What follows is an examination of a parallel port
device driver for each of the four platforms dis-
cussed in this paper:

December 16, 2002 ii

4.1 Linux

As with all of the source code in Linux, a sample
device driver was easy to get. Although it seemed
quite complex at first, close examination showed
that the driver was really quite verbose, but not
necessarily complex.

Firstly, device drivers are not like traditional
user-space C programs; they operate in kernel
space, with kernel-level access modes, and as such
do not have access to the traditional user-space
include libraries, which do not have the same
modes. Therefore, there are a number of libraries
available solely for kernel-space source code; indeed,
most kernel-space code will have numerous lines
of code dedicated to includes. Most user-space
libraries have kernel-space equivalents in Linux;
for example, malloc can be used by including
linux/malloc.h. Some standard include files for
device drivers are linux/sched.h, with scheduling
routines; linux/kernel.h, which contains various
kernel-level debugging routines such as printk(),
the kernel version of printf(); linux/malloc.h,
which includes the kernel versions of malloc()
and free(); and so on. Of particular note are
linux/config.h and linux/module.h. config.h
contains many configuration definitions, while
module.h must be included by all drivers. There
are, of course, many other header files which can
be included by device drivers, depending on each
particular driver’s design.

Another very important aspect of driver design -
indeed, with all kernel code - is the use of prepro-
cessor symbols. These symbols indicate to pieces
of source code various characteristics of the sys-
tem which otherwise would not be available to the
driver. For a device driver, two symbols must be
defined: __KERNEL__, which identifies a piece of code
as kernel code, and MODULE, which identifies a piece
of source code as a module, or driver). These two
symbols should be defined at the top of the source
file, to signify that all code to follow belongs as ker-
nel code, and is a device driver. Other symbols are
typically defined and checked throughout the driver
to send information to or receive information from
the kernel.

Since drivers can (and frequently are) imple-
mented at the console, and as such, a mecha-
nism must be in place to set parameters at load
time. There is, indeed, such a mechanism. The
MODULE_PARM macro is used to declare a console pa-
rameter, and to assign it to a variable in the driver.

The final important preprocessor item to note

Parallel Port Drivers

is the MOD_INC_USE_COUNT and MOD_DEC_USE_COUNT
macros, which - as the names imply - increment and
decrement the module’s use counts. This is vitally
important, as systems will not unload modules that
are busy (i.e. have nonzero usage counts).

Of course, there’s more to a driver than macros
and preprocessor symbols. Drivers need to have es-
tablished entry and exit points, as well as certain
identifiable points of entry to perform certain oper-
ations. This is accomplished by defining a struct
file operations variable, defined in 1linux/fs.h,
which will include a series of pointers to each of the
entry points in the driver. Any pointers not listed
are null, and represent entry points that do not
exist in the driver, for one reason or another. The
defined struct file operations variable is then
passed to the kernel in the register_chrdev call,
which is a vital call for any character device (such
as a parallel port). This call is what actually regis-
ters the device with the kernel, and by passing the
struct file operations variable, the kernel then
knows what functions to call inside of the driver.
Likewise, there is also a unregister_chrdev, which
- as the name implied - will unregister the charac-
ter device. The two calls are typically found in the
driver’s init and exit functions, which - as im-
plied - initialize and exit the driver. Like with the
operations, you need to specify which functions re-
fer to each operation; this is done with the calls
module_init() and module_exit(), with the ap-
propriate function as a parameter.

The most common operations are listed below[6]:

e read: Exactly as it says - will read data from
the device.

e write: Will write data to the device

e open: Though it is not necessary, implement-
ing this operation will let the driver know it
has been opened successfully.

e release: Like open, this can be omitted. This
is implemented to release the driver from the
kernel. Note, though, that some instances of
the driver may be created through the use
of fork and other calls; in these instances,
release is never called, but the driver exits
nonetheless.

e ioctl: This is a very important operation,
though is not always implemented. This oper-
ation makes the driver perform device-specific
operations above and beyond read and write.

December 16, 2002 iii

e poll: Asks the writer if it is in a state to either
read or write. If it is not defined, the device is
assumed to be both readable and writable.

Although there are more operations than the ones
listed above, these operations provide for all of the
basic functionality that may be required in a device
driver.

After broadly outlining the parts of a device
driver, we can now show a rough draft of what a
device driver should look like. Bear in mind that
the focus of the paper is specifically on parallel port
drivers; as such, the structure of the driver below
will be that of a character device, which would be
the categorization of a parallel port.

// Comment section describing the driver and
// the device
// VWritten by: Noel Vega (noel.vega@pba.com)

#ifndef __KERNEL__

define __KERNEL__
#endif

#ifndef MODULE

define MODULE
#endif

// Need this symbol

// and this one!

// Two mandatory includes for device drivers
#include <linux/config.h>

#include <linux/module.h>

#include files pertaining to this device
#define any needed symbols here

// declare any console parameters here
MODULE_PARM(var_name, ‘‘var_type’’);
// Possible variable types:

yp
// ¢¢i’’, an int; ‘‘h’’, a short; ‘‘b’’,
// ¢‘17?, a long, and ‘‘s’’, a string.

a byte;

// declare any other variables here

int open(struct inode *inode,
struct file *filp)
{
extern struct file_operations fops;
MOD_INC_USE_COUNT; // a must!
// here’s where we pass our
// info to the kernel
filp->f_op = &fops;

// Any other code for opening the device
return O;

}

int release(struct inode *inode,
struct file *filp)
{

Parallel Port Drivers

MOD_DEC_USE_COUNT;
// any other cleanup code goes here
return O;

}

int read(struct inode *inode,

struct file *filp,

char *buf, int count)

{
// implement the read operation here
return 0;

}

int write(struct inode *inode,
struct file *filp,
const char *buf, int count)
{
// implement write here
return 0;

}

int poll(struct inode *inode,
struct file *filp,

int mode, select_table *table)
{

return the current poll state;

}
// The all-important file_ops:

struct file_operations fops = {
read: read,
write: write,
poll: poll,
open: open,
release: release,

};

// possible other functions
int init(void)
{
// init code
int return =
register_chrdev(majornum, name, fops);

return 0; // unless code does otherwise

}

void exit(void)

{
unregister_chrdev(majornum, name);
// cleanup code

}

module_init(init);
module_exit (exit);

December 16, 2002 iv

4.2 FreeBSD

As similar as FreeBSD is at the front end, the in-
ner workings are just as similar. Device drivers for
FreeBSD, while following a slightly different con-
vention, have much of the same concepts behind
them as they do in Linux, but are implemented dif-
ferently.

There are a number of subtle differences between
Linux and FreeBSD device drivers. For one, the
#include files are typically in the sys directory,
as opposed to the Linux directory. printk() is
replaced with uprintf () in FreeBSD, though it is
important to note that printf () is permissible in
FreeBSD driver code.

There are, however, bigger implementational dif-
ferences between drivers of the two OS’s. A no-
table difference is that preprocessor symbols are
used much less frequently in FreeBSD. For ex-
ample, whereas in Linux all modules must de-
fine _KERNEL__ and MODULE as well as includ-
ing linux/module.h and 1linux/config.h, in
FreeBSD only the includes are required (note that
config.h is actually conf.h in FreeBSD). Finally,
malloc() and free() are implemented as macros;
hence, malloc() becomes MALLOC(), etc. There
are also two extra related macros, MALLOC DECLARE
and MALLOC DEFINE, which alert the kernel that a
MALLOC() is forthcoming, and informs the kernel as
to the nature of the MALLOC() call.

Even more important, however, are the differ-
ences between the data structures between the two.
While in Linux a struct file operations is re-
quired to point to the various driver entry points,
in FreeBSD a character driver would achieve this
through the use of a struct cdevsw, which is little
more than a list of the various possible driver entry
points. If one of the entry points is defined in the
driver, the name of the function in the driver associ-
ated with the entry point is listed in that place; oth-
erwise, a constant no<entry_point _name> is used.
For example, if a driver did not implement the
ioctl entry point, that part of the struct is set
to noioctl. As a result, a common convention is
to list each part of the struct with its own line, to
ensure that every part of the struct is declared as
well as for easy reading. In addition, the name of
the device, the device’s major number!, and other
related information is included inside of this struct,
whereas in Linux most of this other information
was set in the register_chrdev call. Each func-
tion is also declared as a function prototype with a
return type of d_ <function-type>_t early on. For

Parallel Port Drivers

example, an open function is declared as a d_open_t
function.? Finally, to declare the module as a de-
vice driver, you must make a call to the macro
DEV_MODULE(). This macro informs the driver as to
the name of the device, and contains a reference to
the driver function which implements loading and
unloading, FreeBSD’s equivalent of Linux’s init ()
and exit(). The loader function is essentially a
switch statement, with a case for loading (which
includes code to store the device locally based on
the struct cdevsw declared earlier, among other
things) and one for unloading (which usually in-
cludes a call to destroy dev(), a function which
destroys the locally stored device, and FREE() to
return the memory used)[5].

With a basic understanding of the underlying
concepts behind device drivers for FreeBSD, we can
now contruct a pseudo-driver for FreeBSD, keeping
in mind again that this driver is specifically tar-
geted at parallel ports, which are character devices.
Also note the differences in the conventions used,
i.e. the indentation used in function declarations:

// Comments describing the source code
// VWritten by: Noel Vega (noel.vega@pba.com)

#include
#include
#include
#include
#include

<sys/types.h>
<sys/module.h>
<sys/systm.h>
<sys/kernel.h>
<sys/conf .h>

// Function prototypes
// Assuming we only read, write, open, close

d_open_t open;
d_close_t close;
d_read_t read;
d_write_t write;

// Entry points declared here
// Again, assume only the above operations
static struct cdevsw this_cdevsw = {
open,
close,
read,
write,
noioctl,
nopoll,
nommap,
nostrategy,
<name>,
<major_num>,

2A major number is used in both Linux and FreeBSD to
help the kernel identify devices. They are usually dynami-
cally assigned based on which numbers are available.

December 16, 2002

};

nodump,
nopsize,
D_TTY,
-1

// local vars and other definitioms

// The loader:
static int

loader(struct module *m, int cmd, void *arg)

{

int err = 0;

// local var declarations

switch(emd) {

case MOD_LOAD:
// load code here
break;

case MOD_UNLOAD:
// unload code here
break;

default:
err = EINVAL; // invalid command error
break;

}

return(err) ;

int
open(dev_t dev, int flags, int devtype,

{

}

struct proc *p)

// device open code here
return(0) ;

int
close(dev_t dev, int flags, int devtype,

{

}

struct proc *p)

// device close code here
return(0) ;

int

read(dev_t dev, struct uio *uio,

{

}

int flags)

// read code goes here
return(0) ;

int
write(dev_t dev, struct uio *uio,

{

int flags)

// write code goes here

Parallel Port Drivers

return(0) ;

}

DEV_MODULE(name, loader, NULL);

Clearly, there are more developed drivers than
this one, and more parts which are not included
here, but filling in the missing functionality with
device-specific code will accomplish the task.

4.3 Windows 2000

Windows 2000 is about as different from Linux and
FreeBSD as the two were similar to each other.
While there are some functional similarities be-
tween the two, including the kinds of routines a
driver may provide, there are a vast number of dif-
ferences in structure, implementation, and conven-
tions. The design of Windows 2000 had the OS
implement many of the same features as had ex-
isted under Windows NT. From a developmental
standpoint, the two operating systems are virtu-
ally the same, even sharing key header files such as
ntddk.h, explained below.

Firstly, we can examine the differences in struc-
ture. The Windows 2000 I/O Manager is the aspect
of the operating system in charge of handling de-
vice drivers. As needed, the manager will call vari-
ous routines in the driver, much as is done in Linux
and FreeBSD. For example, the Win2K equivalents
of Linux’s init () and exit() are DriverEntry()
and Unload (). Note, however, that Windows offers
a separate routine for cases of system shutdown and
for cases of a system crash. The Shutdown() rou-
tine provides a driver with an opportunity to close
down the hardware without completely cleaning up
after itself; the thought process here is that the sys-
tem is “going away” anyway, thus a perfect cleanup
is not required.[2] In addition, in the event of a sys-
tem crash, there may be an opportunity for a driver
to gain some semblance of control and perform vital
functions to close down during the crash. These op-
erations are performed in the driver’s Bugcheck ()
routine. Finally, rather than a series of #includes,
there is one master header file for driver writing,
namely ntddk.h.

In addition, there are a number of I/O rou-
tines for Win2K drivers, as opposed to sim-
ply one ioctl() routine. At a minimum,
drivers must implement a CreateDispatch() and
a CloseDispatch() routine. These two are the
Win2K equivalents of open() and close() rou-
tines, and are called as such. Other routines include

December 16, 2002 vi

an Interrupt Service Routine (ISR), which handles
hardware interrupts, a Start I/O routine, which be-
gins the I/0 process, synchronization routines, and
much more.

Indeed, without one centralized place to declare
all of these routines, it can be quite confus-
ing. Thankfully, much as was done in Linux
and FreeBSD, there is such a mechanism. In the
driver’s DriverEntry () routine, a PDRIVER_OBJECT
is passed to the driver which contains pointers
to various routines, much as Linux’s struct
file operations. It is implemented in a slightly
different way, however. The object is a set of
pointers, as was implemented in Linux. One
pointer goes to the Driver _Unload routine. The
rest are implemented as an array of pointers
called MajorFunction. A series of constants
is used to index the array, with each constant
being mapped to the driver function for which
it was named. Simply setting the pointer for
each implemented function to the appropriate
routine in the driver will accomplish the task.
For example, to set the DispatchCreate()
function, the line of code would be:
pDriverObject->MajorFunction[IRP MJ_CREATE]
= DispatchCreate; Other functions are assigned
in a similar fashion.

Finally, the device has to be created, and the
OS informed of it. Part of this is done exter-
nally, with a new entry in the kernel registry no-
tifying the kernel of a new driver. Once the
driver is called, though, the rest is handled in-
ternally. A call to IoCreateDevice(), contain-
ing the PDRIVER_OBJECT declared earlier, the size
of the data structure used to represent the driver,
the name of the device, and a pointer to the
device object3are used. * Lastly, a symbolic
link must be created to the device. The call
ToCreateSymbolicLink () does this trick, taking in
two strings representing the symbolic link and the
actual name of the device. Before going through a
pseudo driver, one important distinction must be
made about Win2K drivers. Just about all I/O un-
der Windows 2000 is packet-driven, with references
to I/O Request Packets (IRPs). The IRP’s con-
tain all the information needed for the function to
complete the I/O requested. When the I/O is com-
pleted, the IRP is sent back to the I/O Manager

4The term “object” is used here because there is a rec-
ognized degree of opject-oriented programming in Win2K
drivers; indeed, many drivers are actually written in
C++.More on this in page 64 of the Windows 2000 Device
Driver Book[2].

Parallel Port Drivers

with a status code, which is then returned back to
the user.[2]

With this being cleared up, we can now complete
a pseudo device driver. Note that there is usually
some information stored in a defined struct about
the driver, usually defined in a separate header
file.[8] As elsewhere in this paper, we assume the
driver to only need open, close, read, and write
functions, consistent with a parallel port. Also
note the conventions used in indentation, which are
vastly different than those used under Linux and
FreeBSD.

// Comments, as always.
// VWritten by: Noel Vega (noel.vega@pba.com)

#include <ntddk.h>
#any necessary includes

// forward declarations

static NTSTATUS CreateDev (
IN PDRIVER_OBJECT pDriverQObject,
IN ULONG devNum) ;

static VOID Unload (
IN PDRIVER_OBJECT pDriverObject);

static NTSTATIC DispCreate (
IN PDEVICE_OBJECT pDev0Obj,
IN PIRP plrp);

static NTSTATUS DispClose (
IN PDEVICE_OBJECT pDevObj,
IN PIRP pIrp);

static NTSTATUS DispWrite (
IN PDEVICE_OBJECT pDev0Obj,
IN PIRP pIrp);

static NTSTATUS DispRead (
IN PDEVICE_OBJECT pDevObj,
IN PIRP pIrp);

// Since this is sometimes in C++,

// extern ‘‘C’’ is used here

extern ‘‘C’’ NTSTATUS DriverEntry (
IN PDRIVER_OBJECT pDriver(Object,
IN PUNICODE_STRING pRegPath) {

NTSTATUS ret;

// NTSTATUS is a return value,

// probably just an int on most systems..
ULONG devNum = O;

PDEVICE_OBJECT pDevObj;

// other local var definitions
pDriverObject->DriverUnload = Unload;

December 16, 2002 vii

pDriverObject->MajorFunction [IRP_MJ_CREATE]

= DispCreate;
pDriverObject->MajorFunction [IRP_MJ_CLOSE]
= DispClose;
pDriverObject->MajorFunction[IRP_MJ_WRITE]
= DispWrite;
pDriverObject->MajorFunction [TRP_MJ_READ]
= DispRead;
ret = IoCreateDevice(
pDriverObject,

sizeof (<driver_type>),
<device name>,
FILE_DEVICE_UNKNOWN,
0, TRUE,
&pDev0bj) ;

// exit if there’s an error

if (INT_SUCCESS(ret))
return ret;

ret = IoCreateSymbolicLink(
<symbolic link name>,
<device name>);

// exit on error

if (!NT_SUCCESS(ret)) {
IoDeleteDevice(pDevObj) ;
return ret;

}

return STATUS_SUCCESS;

VOID Unload (
IN PDRIVER_OBJECT pDriverObject) {

<for each device controlled> {
<find the symbolic link>
IoDeleteSymbolicLink(<1ink>) ;
<find the device>
IoDeleteDevice (<device>);

NTSTATUS DispCreate (
IN PDEVICE_OBJECT pDev0bj,
IN PIRP plIrp) {
// handle any startup issues here
pIrp->IoStatus.Status = STATUS_SUCCESS;
IoCompleteRequest(pIrp, IO_NO_INCREMENT) ;
return STATUS_SUCCESS;

NTSTATUS DispClose (
IN PDEVICE_OBJECT pDev0bj,
IN PIRP pIrp) {
// handle cleanup issues here
pIrp->IoStatus.Status = STATUS_SUCCESS;
IoCompleteRequest(pIrp, IO_NO_INCREMENT) ;
return STATUS_SUCCESS;

Parallel Port Drivers

NTSTATUS DispWrite (
IN PDEVICE_OBJECT pDevObj,
IN PIRP pIrp) {
// write code goes here
// Status codes assume success...
pIrp->IoStatus.Status = STATUS_SUCCESS;
pIlrp->IoStatus.Information =

<# bytes xferred>;

IoCompleteRequest (pIrp, IO_NO_INCREMENT) ;
return STATUS_SUCCESS;

}

NTSTATUS DispRead (
IN PDEVICE_OBJECT pDevObj,
IN PIRP pIrp) {
// Read code goes here
// Status codes assume success...
pIrp->IoStatus.Status = STATUS_SUCCESS;
plrp->IoStatus.Information =

<# bytes xferred>;

TIoCompleteRequest (pIrp, IO_NO_INCREMENT) ;
return STATUS_SUCCESS;

Clearly, Win2K code is quite verbose - and not as
easily understood as Linux or FreeBSD code. This
would more than certainly explain the Windows
crash problem; it takes quite a bit of understanding
to write a Win2K driver.

4.4 Windows NT

As mentioned above, Windows 2000 was designed
to have much of the same functionality as Windows
NT. Many of the hardware features in Windows N'T
are featured in Windows 2000 as well. Windows
2000 represented a quantum leap in capability and
security from Windows 98. As a result, there is
nothing to examine with regards to Windows NT
device drivers; a driver written for Windows 2000
should, in fact, run fine on Windows NT. For exam-
ple, the Universal Parallel Port Driver for Windows
by Thesycon System Software[4] does, in fact, sup-
port both Windows NT and Windows 2000 with
one source file and no version checking (i.e. it does
not have any conditional compilation, such that it
would compile some code for Win2K, and others for
WinNT?). 6 Indeed, the Thesycon driver also sup-
ports Windows XP, which suggests that there may

6Such conditional compilation exists for Linux; certain
versions of the kernel will define a preprocessor symbol iden-
tifying that version. By checking for the symbol, you can
conditionally compile.

viii

December 16, 2002

be a reduction in compatibility issues from one ver-
sion of Windows to another in the future.

5 Conclusions

While Windows systems may be reducing the trou-
blesome compatibility issues which have plagued
them in the past, there is still a strong issue of
compatibility for hardware from one platform to the
next. Even in systems based on the same kernel (as
both Linux and FreeBSD are based on the UNIX
kernel), there are sufficient compatibility issues to
keep drivers designed for one system from working
on the other. Indeed, in many cases a series of pre-
processor conditionals are needed just to get some
drivers to compile for various versions of Linux
alone. Nonetheless, there are a number of function-
ality similarities between various systems. In the
future, it should be possible to exploit these simi-
larities to create a system whereby driver creation
is automated, perhaps through use of a domain-
specific language. For example, each of the operat-
ing systems requires one function to open and one
to close a device file. It may be possible to specify
functionality in a separate language, then have a
compiler tweak the functionality to fit the require-
ments for opening and closing a device file in each
OS. Clearly, there is a lot of room for enhancement
in this field, and there seem to be exciting possibil-
ities for doing so.

References

[1] Peter Baer Galvin Abraham Silberschatz and
Greg Gagne. Operating System Concepts, 6th
Ed. John Wiley and Sons, 2002.

[2] Art Baker and Jerry Lozano. The Windows
2000 Device Driver Book. Prentice Hall PTR,

2001.

Robert DeLine and Manuel Fahndrich. Enforc-
ing high-level protocols in low-level software. In
PLDI, Snowbird, Utah, 2001. ACM.

[3]

G. Hildebrandt. Universal Parallel Port Driver
for Windows Reference Manual. Thesycon Sys-
tem Software & Consulting, Germany, March
2002.

[4]

The FreeBSD Documentation Project. Freebsd
developers’ handbook. Technical report,
FreeBSD.org, 2002.

Parallel Port Drivers

[6]

[7]

Alessandro Rubini and Jonathan Corbet. Linux
Dewice Drivers, Second Edition. O’Reilly, 2001.

Sharad Malik Shaojie Wang and Reinaldo A.
Bergamaschi. Modeling and integration of pe-
ripheral devices in embedded systems. Techni-
cal report, Electrical Engineering Department,
Princeton University and IBM T.J. Watson Re-
search Center, 2002. Submitted to the Date
2003 conference, but not accepted as of yet.

Peter G. Viscarola and W. Anthony Mason.
Windows NT Device Driver Development. New
Riders, 2001.

Angel Yu. Custom windows nt 4.0 parallel port
device driver: A component of a network perfor-
mance measurement tool. Master’s thesis, Cal-
ifornia Polytechnic State University, 1998.

December 16, 2002

ix

