
Review of Digital Logic
COMS W4995-02

Prof. Stephen A. Edwards
Fall 2002

Columbia University
Department of Computer Science

Synchronous Digital Logic Systems

Raw materials: CMOS transistors and wires on ICs

Wires are excellent conveyors of voltage

• Minimal leakage

• Fast, but not instantaneous propagation

• Many orders of magnitude more conductive than glass

CMOS transistors are reasonable switches

• Finite, mostly-predictable switching times

• Nonlinear transfer characteristics

• Voltage gain is in the 100s

Philosophy

Must deal with unpredictable voltages and unpredictable
delays

Digital: discretize values to avoid voltage noise

• Only use two values

• Voltages near these two are “snapped” to remove
noise

Synchronous: discretize time to avoid “time noise”

• Use a global, periodic clock

• Values generated before the clock are ignored until
the clock arrives

Combinational Logic

Boolean Logic Gates

Inverter

A Y

0 1

1 0

AND

AB Y

00 0

01 0

10 0

11 1

OR

AB Y

00 0

01 1

10 1

11 1

XOR

AB Y

00 0

01 1

10 1

11 0

A Full Adder

Typical example of building a more complex function

ABCin CoutS

000 0 0

001 0 1

010 0 1

011 1 0

100 0 1

101 1 0

110 1 0

111 1 1

A

B
Cin

S

Cout

Most Basic Computational Model

Every gate is continuously looking at its inputs and
instantaneously setting its outputs accordingly

Values are communicated instantly from gate outputs to
inputs

A C
B

C

B

A

All three switch
at exactly the

same time

Simple Delays

Real implementations are not quite so perfect

Computation actually takes some time

Communication actually takes some time

A C
B

C

B

A

Delay Ranges

Delays are often partially unpredictable

Usually modeled with a minimum and maximum

A C
B

C

B

A



Busses

Wires sometimes used as shared communication medium

Think “party-line telephone”

Bus drivers may elect to set the value on a wire or let
some other driver set that value

Electrically disastrous if two drivers “fight” over the value
on the bus

Implementing Busses

Q

D

OE

S
hared

B
us

W
ire

Basic trick is to use a “tri-state” driver
than can choose to not drive a wire.

Data input and output enable

When driver wants to send values on
the bus, OE = 1 and D contains the
data

When driver wants to listen and let
some other driver set the value,
OE = 0 and Q returns the value

Four-Valued Simulation

Wires in digital logic often modeled with four values:
0, 1, X, Z

X represents an unknown state

• State of a latch or flip-flop when circuit powers up

• Result of two gates trying to drive wire to 0 and 1
simultaneously

• Output of flip-flop when setup or hold time violated

• Output of a gate reading an “X” or “Z”

Z represents an undriven state: Value on a shared bus
when no driver is output-enabled

Sequential Logic and Timing

Sequential Logic

Simply computing functions usually not enough

Want more time-varying behavior

Typical: combinational logic with state-holding elements

Combinational
Logic

Clock

Inputs Outputs

State-holding elements

State Machines

Common use of
state-holding elements

Idea: machine may go to a
new state in each cycle

Output and next state
dependent on present state

E.g., a four-counter

0 1

3 2

C/1

C/2

C/3

C/0

C/0 C/1

C/2C/3

State-holders: Latches & Flip-Flops

Latch

Level-sensitive

Transparent when clock is
high

Holds last value when
clock is low

Cheap to implement

Somewhat unwieldy to
design with

Flip-flop

Edge-sensitive

Always holds value

New value sampled when
clock transitions from 0 to 1

More costly to implement

Much easier to design with

Latches & Flip-Flops

Timing diagrams for the two common types:

D Q
Flip-flop

D Q

Clk
Latch

Clk

D

RAMs

Another type of state-holding element

Addressable memory

Good for storing data like a von Neumann program

Write

Read

Address

Data In Data Out



RAMs

Write cycle

Present Address, data to be written

Raise and lower write input

Read cycle

Present Address

Raise read

Contents of address appears on data out

Write
Read

Address

Data In Data Out

Setup & Hold Times

Flip-flops and latches have two types of timing
requirements:

Setup time: D input must be stable some time before the
clock arrives

Hold time: D input must remain stable some time after the
clock has arrived

Setup & Hold Times

For an (edge-sensitive) flip-flop

Clk

D Setup
Time

Hold
Time

Synchronous System Timing

Budgeting time in a typical synchronous design

Clock Period

Longest Path
Clk-to-Q Setup

Skew Skew

Digital Systems

Typical System Architecture

Most large digital systems consist of

Datapath

Arithmetic units (adders, multipliers)

Data-steering (multiplexers)

Memory

Places to store data across clock cycles

Memories, register files, etc.

Control

Interacting finite state machines

Direct how the data moves through the datapath

Typical System Architecture

Primitive datapath plus controller

Controller

Registers
Address
Reg.

Memory

Shared Bus

Operation Result Latch Latch Read, Write

Implementing Digital Logic

Discrete logic chips

NAND gates four to a chip and wire them up (e.g., TTL)

Programmable Logic Arrays (PLAs)

Program a chip containing ANDs feeding big OR gates

Field-Programmable Gate Arrays (FPGAs)

Program lookup tables and wiring routes

Application-Specific Integrated Circuit (ASICs)

Feed a logic netlist to a synthesis system

Generate masks and hire someone to build the chip

Full-custom Design

Draw every single wire and transistor yourself

Hire someone to fabricate the chip or be Intel

Implementing Digital Logic
Discrete logic is dead

Requires too many chips
PLAs

Nice predicable timing, but small and limited
FPGAs

High levels of integration, very convenient
Higher power and per-unit cost than ASICs

ASICs
Very high levels of integration, costly to design
Low power, low per-unit cost, but huge initial cost

Full-custom
Only cost-effective for very high-volume parts
E.g., Intel microprocessors



Digital Logic in Embedded Systems

Low-volume products (1000s or less) typically use FPGAs

High-volume products usually use ASICs

Non-custom logic usually implemented using
application-specific standard parts

• Processor chipsets

• Graphics controllers

• PCI bus controllers

• USB controllers

• Ethernet interfaces


