
Programming in Esterel
COMS W4995-02

Prof. Stephen A. Edwards
Fall 2002

Columbia University
Department of Computer Science



People Counter Example

Construct an Esterel program that counts the number of
people in a room. People enter the room from one door
with a photocell that changes from 0 to 1 when the light is
interrupted, and leave from a second door with a similar
photocell. These inputs may be true for more than one
clock cycle.

The two photocell inputs are called ENTER and LEAVE.
There are two outputs: EMPTY and FULL, which are
present when the room is empty and contains three
people respectively.

Source: Mano, Digital Design, 1984, p. 336



Overall Structure

ENTER

LEAVE

Conditioner

Conditioner

Counter

EMPTY

FULL

ADD

SUB

Conditioner detects rising edges of signal from photocell.

Counter tracks number of people in the room.



Implementing the Conditioner

module Conditioner:

input A;

output Y;

loop

await A; emit Y;

await [not A];

end

end module



Testing the Conditioner
# esterel -simul cond.strl
# gcc -o cond cond.c -lcsimul # may need -L
# ./cond
Conditioner> ;
--- Output:
Conditioner> A; # Rising edge
--- Output: Y
Conditioner> A; # Doesn’t generate a pulse
--- Output:
Conditioner> ; # Reset
--- Output:
Conditioner> A; # Another rising edge
--- Output: Y
Conditioner> ;
--- Output:
Conditioner> A;
--- Output: Y



Implementing the Counter: First Try
module Counter:
input ADD, SUB;
output FULL, EMPTY;

var count := 0 : integer in
loop

present ADD then if count < 3 then
count := count + 1 end end;

present SUB then if count > 0 then
count := count - 1 end end;

if count = 0 then emit EMPTY end;
if count = 3 then emit FULL end;
pause

end
end

end module



Testing the Counter
Counter> ;
--- Output: EMPTY
Counter> ADD SUB;
--- Output: EMPTY
Counter> ADD;
--- Output:
Counter> SUB;
--- Output: EMPTY
Counter> ADD;
--- Output:
Counter> ADD;
--- Output:
Counter> ADD;
--- Output: FULL
Counter> ADD SUB;
--- Output: # Oops: still FULL



Counter, second try
module Counter:
input ADD, SUB;
output FULL, EMPTY;

var c := 0 : integer in
loop

present ADD then
present SUB else

if c < 3 then c := c + 1 end
end

else
present SUB then

if c > 0 then c := c - 1 end
end;

end;
if c = 0 then emit EMPTY end;
if c = 3 then emit FULL end;
pause

end
end
end module



Testing the second counter
Counter> ;
--- Output: EMPTY
Counter> ADD SUB;
--- Output: EMPTY
Counter> ADD SUB;
--- Output: EMPTY
Counter> ADD;
--- Output:
Counter> ADD;
--- Output:
Counter> ADD;
--- Output: FULL
Counter> ADD SUB;
--- Output: FULL # Working
Counter> ADD SUB;
--- Output: FULL
Counter> SUB;
--- Output:
Counter> SUB;
--- Output:
Counter> SUB;
--- Output: EMPTY
Counter> SUB;
--- Output: EMPTY



Assembling the People Counter
module PeopleCounter:
input ENTER, LEAVE;
output EMPTY, FULL;

signal ADD, SUB in
run Conditioner[signal ENTER / A,

ADD / Y]
||

run Conditioner[signal LEAVE / A,
SUB / Y]

||
run Counter

end

end module



Vending Machine Example

Design a vending machine controller that dispenses gum
once. Two inputs, N and D, are present when a nickel and
dime have been inserted, and a single output, GUM,
should be present for a single cycle when the machine
has been given fifteen cents. No change is returned.

N = D =

GUM =

Source: Katz, Contemporary Logic Design, 1994, p. 389



Vending Machine Solution
module Vending:
input N, D;
output GUM;

loop
var m := 0 : integer in

trap WAIT in
loop

present N then m := m + 5; end;
present D then m := m + 10; end;
if m >= 15 then exit WAIT end;
pause

end
end;
emit GUM; pause

end
end
end module



Alternative Solution
loop

await
case immediate N do await

case N do await
case N do nothing
case immediate D do nothing

end
case immediate D do nothing

end
case immediate D do await

case immediate N do nothing
case D do nothing

end
end;
emit GUM; pause

end



Tail Lights Example

Construct an Esterel program that controls the turn
signals of a 1965 Ford Thunderbird.

Source: Wakerly, Digital Design Principles & Practices, 2ed, 1994, p. 550



Tail Light Behavior



Tail Lights

There are three inputs, LEFT, RIGHT, and HAZ, that
initiate the sequences, and six outputs, LA, LB, LC, RA,
RB, and RC. The flashing sequence is

LC LB LA step RA RB RC

1

2

3

4



A Single Tail Light
module Lights:
output A, B, C;

loop
emit A; pause;
emit A; emit B; pause;
emit A; emit B; emit C; pause;
pause

end

end module



The T-Bird Controller Interface
module Thunderbird :
input LEFT, RIGHT, HAZ;
output LA, LB, LC, RA, RB, RC;

...

end module



The T-Bird Controller Body
loop

await
case immediate HAZ do

abort
run Lights[signal LA/A, LB/B, LC/C]

||
run Lights[signal RA/A, RB/B, RC/C]

when [not HAZ]
case immediate LEFT do

abort
run Lights[signal LA/A, LB/B, LC/C]

when [not LEFT]
case immediate RIGHT do

abort
run Lights[signal RA/A, RB/B, RC/C]

when [not RIGHT]
end

end



Comments on the T-Bird

I choose to use Esterel’s innate ability to control the
execution of processes, producing succinct
easy-to-understand source but a somewhat larger
executable.

An alternative: Use signals to control the execution of two
processes, one for the left lights, one for the right.

A challenge: synchronizing hazards.

Most communication signals can be either level- or
edge-sensitive.

Control can be done explicitly, or implicitly through signals.



Traffic-Light Controller Example

C

C This controls a traffic light at the
intersection of a busy highway
and a farm road. Normally,
the highway light is green but if a
sensor detects a car on the farm

road, the highway light turns yellow then red. The farm
road light then turns green until there are no cars or after
a long timeout. Then, the farm road light turns yellow then
red, and the highway light returns to green. The inputs to
the machine are the car sensor C, a short timeout signal
S, and a long timeout signal L. The outputs are a timer
start signal R, and the colors of the highway and farm road
lights.

Source: Mead and Conway, Introduction to VLSI Systems, 1980, p. 85.



The Traffic Light Controller
module Fsm:

input C, L, S;
output R;
output HG, HY, FG, FY;

loop
emit HG ; emit R; await [C and L];
emit HY ; emit R; await S;
emit FG ; emit R; await [not C or L];
emit FY ; emit R; await S;

end

end module



The Traffic Light Controller
module Timer:
input R, SEC;
output L, S;

loop
weak abort

await 3 SEC;
[

sustain S
||

await 5 SEC;
sustain L

]
when R;

end

end module



The Traffic Light Controller
module TLC:
input C, SEC;
output HG, HY, FG, FY;

signal S, L, S in
run Fsm

||
run Timer

end

end module


