The Esterel Language A Simple Example

Developed by Gérard Berry

The Synchronous Language Esterel starting 1983 B
Originally for robotics applications

The specification:

The output O should occur When inputs A and B

have both arrived. The R input should restart this -
COMS W/995 02 VA iv }PU u i

AN . 4 behavior. / \
Prof. Stepﬁen A Edwards \ Imperative, textual language / \
Fall 2002 Synchronous model of time like
Columbia University “ that in digital circuits ‘ |
Departme/gr/t\‘)f"CombUter\§cience ‘ Concurrent , / - |
\ /// \ /// \\
Deterministic \\ / \ \ y

The Esterel Version The Esterel Version

nodul e ABRO Esterel programs nodul e ABRO loop...each statement
input A B, R built from modules - input A B R implements reset
out put O out put O e .
Eac module has an mterTa e - N
| oop ofinput and output signals | oop / await waits for the \
[amait A || await/ B]; \ [anmait A || await/ BA]/ next cycle where
enmit O enmit O its signal is present |
each R each R
\) |
/ end nodul e T end nodul e N1 runs the two awaits
X // N / . inparallel :
/ \ \
\ / Much simpler since Ianguage includes notlons of signals, / / \ /
/ waiting, and reset. \ \ / \ /
‘ 7 \ S ‘ 7 | S ‘ 7
\ ”’ \ ”’ \ ”’
B | B | B
B | B | B
B 0] B 0 (] B 0 [
B | B | B
A B | ; B | B
The Esterel Version O e— Basic Ideas of Esterel S Uses of Esterel C ee—
B | B | B
B] . B] B
modul e ABRO Imperative, textual language Wristwatch
input A, B, R o Concurrent I c al | I
— — ime — Canonical example _ —
output O Parallel terminates when Based on synchronous model of time: ~ p - ~
| oop // allits threads ha B * Program execution sync/hénized to an external clock * Reactive, synchronous,/[)a(d real-time N
[{:\V\aiot Al await/ B]; \ « Like synchronous digital logic \ Controllers, e.g., for communication protocols \
emit / \)) \ /
each R * Suits the cyclic executive approach Avionics | “
| Two types of statements‘ S e Fuel control system =
end modul e [Emit O makes signal O present A -
N when it runs \\ e Combinational statements which taﬂ(e ‘zero time” e Landing gear confroller \\ ’
/ \ \ / / \ /
/ \ / (execute and térmlnate in same lnstan\t €.g., emit) / « Other user mtérfac ot ask s /
\ * Sequential statements V\)I\ch delay one or more b . h\s woller et
N | // cycles (e.q..| awalt) N “ - rocessor comppnen s (cache QI’] roller, e c) ///

Advantages of Esterel

Model of time gives programmer precise timing control

Concurrency convenient for specifying control systems

Completely deterministic / . h
* Guaranteed: no need fb/r locks, semaphores, etc.

Finite-state language

* Easytoanalyze =~

|
/“

¢ Execution time p(edlctable

/

\\

* Much easier tb verify fOKmaIIy /

Amenable to both hardware fhisoftware |mPIementanoﬂ

Signals

Esterel programs communicate through signals

These are like wires _— T

.

Each signal is either present/ }J(ébsent in each cycle
Can't take multiple values W/ithin acycle
Presence/absence not he‘lld between cycles
Broadcast across the prdgrarrL

Any process can read or wrlte a S|gnal \

—
S
B 000 |
S
; S
Signal Coherence Rules S NSS
S
B
Each signal is only present or absent in a cycle,never both
All writers run before any readersdo—
Thus /))
,/ \\
present A else / \
emit A /
end

is an erroneous program{ (Deadlocks)

The Esterel compller/ rejects this prograﬁ\

Disadvantages of Estere

Finite-state nature of the language limits flexibility
* No dynamic memory allocation
* No dynamic creation of p/rﬁc/esses

Little support for handling qéta; limited to simple
decision-dominated controllers

Synchronous model of tu“ne can lead to overspecification |

Semantic challenges

* Avoiding causahty V|olat|ons often d\fﬁcult
* Difficult to complle

Limited number of users, tools, etc. ‘ e

Basic Esterel Statements

emt S

Make signal S present in the current cycle

A signal is absent unless gﬂﬁﬁ;d in that cycle.
pause ,//

Stop for this cycle and “r"esume in the next.
present S then s; él se sy end

Run s1 |mmed|ateJy if sugnal Sis preSqnt in the curren
cycle, otherW|se i’un s2 \

t

Advantage of Synchrony s
B]

Easy to regulate time

Synchronization is free (e.g., no g{aker’s"’éilﬁéﬁt’hm)\\
Speed of actual computatioq ;é;':\rly uncontrollable
Allows function and timing/f() be specified independently
Makes for deterministic c@ncurrency

Explicit control of “before” “after” “at the same time”

Esterel’s Model of Time

The standard CS model (e.g., Java’s) is asynchronous:
threads run at their own rate. Synchronization-is through

-

calls to wait() and notify(). / N

Esterel's model of time is synchronous like that used in |
hardware. Threads march in lockstep to a global clock.

: ; —— ; Time
a N
/ \ Clock tick /
/ \ \ /
" \\\ /
A —
e
e
B 00
e
; e
Simple Example C e————
e
B
A
nodul e Exanpl el: B
output A B, G /// c N
emt A / N\
present A then / \
enit B
end, [\‘
pause; | |
emt C A
/// “ \\
end module \ \ /
/ \\\ /
\ /
e
e
B 00
I

Time Can Be Controlled E
B

This guarantees every 60th S an M is emitted

every 60 S do T~
vem_yt . ever y invokes its body every 60th S
end M\ emit take;é time (cycles) \

,/ \\\
s s s s S
M ‘ M \
[: — —+ e
1 50 60 61 120 /
/ \ \ /

The || Operator

Groups of statements separated || by run concurrently
and terminate when all groups have terminated

[.
emt A, pause; emt B;
[/ \
pause; enit C pause;, emt D \
1
emt E “ |
A B / \\\ \ //‘J
c D / \ \ /
E \
> |
\ L [

Concurrency and Determinism

Signals are the only way for concurrent processes to
communicate —

\

Esterel does have variables?ﬁhey cannot be shafe\d\
Signal coherence rules ensure deterministic behavior
/

Language semantics cleq’fly defines who must
communicate with whom when \

B 0 |
B
B
Loops B
B
B]
Esterel has an infinite loop statement
Rule: loop body cannot terminate instantly
Needs at least one pause, M etc.
Can't do an infinite amount of work in a single cycle \
/ \
I'oop
emt A pause; p?use; enmit B “
end L |
A A /g/ A \ /
B / B\ \ :
—
| - |

Communication Is Inst

A signal emitted in a cycle is visible immediately
pause; emt A; pause; emt A)
[
pause; present A then enit B end \
// \\\“
/““
/
/

The Await Statement

The await statement waits for a particular cycle await S

waits for the next cycle in which S is present —
[. .
emt A, pause ; pause;, emt A
- o
await A emt B / \
] ‘\
A A .
B

|
/ \‘\
> \
/ \

o \

B 0 |
B 000]
Loops and Synchronization s
]

Instantaneous nature of loops plus await provide very
powerful synchronization mechanisms —
—

| oop
await 60 S;

enit M / \
end / \

S S

~

Bidirectional Communi

Processes can communicate back and forth in the same
cycle P

- ~

[. N
pause; emit A;
present emt C end; \

pause; emt

pause; present A““then em

] /Y/ . T~

The Await Statement

Await normally waits for a cycle before beginning to check
awai t i nmedi at e also checks the-initial cycle

[/
emt A ; pause ; pause; enmt A
/

|| / \\
awai t inmedi ate A(emt B

] | |
A A P
B \\ /‘J

/ / \ \\ /
| \\\ ‘ B
Preemption

Often want to stop doing something and start doing
something else —

- ~

E.g., Ctrl-C in Unix: stop thezca@éntly-running progréﬁ\

Esterel has many constructs for handling preemption
/

\

The Abort Statement

Basic preemption mechanism

General form: _— e

abort /
statement)

when condition / \\\
Runs statement to comp!“étion. If condition ever holds,
abort terminates immediately.

/ \ \ /“
\ /
/ \ /

/

/

/ \ \\
| \\ o
Strong vs. Weak Abort
Strong abort Weak abort
emit A does not run emtAruns——
abort ak abort \
pause; pause;
pause; / pause; \
emt A / emt A \
pause pause
when B; | when B; ‘
emt C - enit C
P/ \‘\\ A //‘
/ C \ B \ /
s”’ C
| ¥ |

O ee—
O eee——
The Trap Statement B
B

A D Normal termination
trap Tin +—+—+— fromfirst process

[A /
pause;
emt A B)
C

pause; D Emit C also runs \
exit T " \

M [|
awai t B; A B Second process

| enit C /”C alIdWa{t:: run
/

end trap; / 1? e'ven though /
emt D first proce§§
‘ has exited ‘

| \\\ i — -

\ /

The Abort Statement
A Normal Termin
abort c -
pause; 44—+
gﬁiuf e:A / Aborted tern}n
when B; /
emt C 7
'B Aborted termin
c emit A preempt

9/ \\ A \\Iormal Termin
/ | B not checked
in first cycle
‘ -

Strong vs. Weak Preem

Important distinction

Something may not cause its own strong preemption

Erroneous

abort
pause; emt A
when A

Nested Traps

trap T1 in
trap T2 in

exit Tl
[
exit T2
]
end;
emt A
end;
emt B

(ke await)

K
/ weak abort

/ pause; emt A
when A

Outer trap takes
precedence; control

transferred directly to\the\
uter trap statement.

//’ emt Anot allowed to run.

ation

ition
\
\
\‘
ation;
ed

atiqh

Strong vs. Weak Preem

Strong preemption:

« The body does not run when the preemption

conditionholds /
e The previous example/' lustrated strong preemption

Weak preemption: /
* The body is allowed tg,r,uneve,g when the
preemptioncondition holds, but is terminated
thereafter /'6 \\ s\
/ \ \
* “weak abort”‘;"implements\%in Esterel
\ |

‘ ~ ‘ -

The Trap Statement

Esterel provides an exception facility for weak preemptio

Interacts nicely with concurrency T~

Rule: outermost trap takes Fyec/e-dence

The Suspend Statemen

Preemption (abort, trap) terminate something, but what i
you want to resume it later? o

~ ~

Like the unix Ctrl-Z / ' \
Esterel’s suspend statement pauses the execution of a

/

group of statements /

Only strong preemption: statement does not run when
condition holds L

|
|
B 000 |
|
|
The Suspend Statement S
|
B
suspend
| oop .
emt A pause; pause T~
end : h
when B / \
A A B Al B A \
r———"'**:\——Bprevents A ‘
from being emitted here; |
resumerl nextcycle =/
/
&d\elays emlssmn ’
‘ of A'by one cycle\ S
|
B 000 |
|
: |
Causality B
|
B

Definition has evolved since first version of the language

Original compiler had concept of “potentials”

Static concept: at a particular/ﬁ'ogram point, which
signals could be emitted aI;zfng any path from that point

Latest definition based on “constructive causality”

Dynamic concept: whethér there’s a “guess-free proof”
that concludes a signal is absent

Compiling Esterel

Semantics of the language are formally defined and
deterministic —

It is the responsibility of the C/npller to ensure the
generated executable behaves correctly w.r.t. the
semantics /

Challenging for Esterel

Causality

Unfortunate side-effect of instantaneous communication
coupled with the single valued signal rule—

Easy to write contradictory pro rams, e.g.,

present A else enit /A end
abort pause; enit A when A

present A then notfn ng-end; emt A

These sorts of programs are erroneous\the Esterel
compiler refuses to complle\them. \\\

Causality Example

emt A /
present B'then emt C)end,
present A else emt B end;~

/

Considered erroneous undet/fﬁe original compiler
/

After emit A runs, there’s a’static path to emit B Therefor
the value of B cannot be decided yet

Execution procedure deaidlggj@; program is bad

Compilation Challenges

Concurrency

Interaction between exceptlg/nsand concurreney\

Preemption /

Resumption (pause, anfvait, etc.)

Checking causality
\

Reincarnation /5

Loop restriction pr/évents most statemen\(rom executing
more than once/fn a cycle\ \
\

Complex interaction between&zzcurrency, traps and loops |

allows certain “statements to execute twice or rpore %
,/’

"JU
$m
oQ.
3 2
T &
& @
/ 3
/ o
/ >
7

Causality

Can be very complicated because of instantaneous
communication L

~
.

For example, this is also erro| /eous

abort / o
pause; / Emission of B
emt B | indirectly causes
when A ‘ emission of A
N —
pause; -

present B then erﬁt A end \\
/ \ \

Causality Example

emt A Red statements

present B then enit C end; /reachable
present A else emit B end; ~

Considered acceptable to thg/étest compiler
/

After emit A runs, it is clear that B cannot be emitted
because A’s presence runs the “then” branch of the
second present ‘

B declared absent, bqth/fqrééent éiéfefn@ts run
/ \

Automata-Based Compil

Key insight: Esterel is a finite-state language

Each state is a set of program counter values where the
program has paused between cycles

Signals are not part of thes/é/ states because they do not
hold their values between/cycles

Esterel has variables, buf these are not considered part
the state —

Automata Compiler Exa

loop void tick() {
HOA- static int s = 0;
emIt_A' =B =0, S .
await C; e N
emit B; swityg(s) {
case O: \
pause A = 1
end /s =1;
| break;
c@se 1:
(9 {
Vs B =1, \s\= ;
/ } N\
/ ‘br eak; /
N\ /
“ } \\\ /
B
B 0]
B
2 3 B
Automata Compilation S
B
B]

Not practical for large programs

Theoretically interesting, but don t work for most prqgrams
longer than 1000 lines /

All other techniques produc/;é slower code

Netlist Compilation Con

Scales very well

* Netlist generation roughly Ilnear in-program stze

* Generated code roughly)r(ear in program size
Good framework for analyz,mg causality

* Semantics of netlists 'straightforward

* Constructive reasonmg equnvalent to three-valued

simulation /q

/

//,/

Terribly inefficient céde \ \

\ \
* Lots of time wasted comp\lng |rre|evant values

* Can be hundreds of time slower than auﬁomata/ -

e Little use of condltlonals

Automata Compiler Exa

emit A; switch (s) {
emit B; case 0: S
await C; =1, - N ~
emit D; B=1; \
present E then s=1; \
emit B /break; \
end case 1 \
if (O {
D1 ‘
it (B B
/// ““\ 5:2; \\ "“‘
} N\ /
/ br eak; /
case\g:
—
B 0 (]
B 0
B 0 (]
Netlist-Based Compilation ===
B 00 (]
B
Key insight: Esterel programs can be translated into
Boolean logic circuits L
Netlist-based compiler: /’/ -
Translate each statement ip{o a small number of logic \\
gates, a straightforward, mechanical process \
Generate code that simulates the netlist
| — |
ya \
/ \ \ /
/ \\\) /
—
B 0 (]
B 0
B 0 (]
Netlist Compilation O ee————
B 0 (]
B

Currently the only solution for large programs that appea
to have causality problems

~

Scalability attractive for industri ’I/users h
Currently the most widely-yéed technique
I
/// \“\ \\\\
/ \ \\
" \\\

=

Automata Compilation C

Very fast code (Internal signaling can be compiled away

Can generate a lot of code because concurrency-can
cause exponential state groW/ -

n-state machine |nteract|ngW|th another n-state machine’
can produce n? states

//

Language provides |nputfconstraints for reducing states
\
* “these inputs are mutuaﬂy exclusive”

rel ation A#/B#C \\
/
e “if this input arrlves thls\one does, too” /
relation P = E . “ -
A —
B 000 [
B 000 [
B 00
B 000 [
H B 000 [
Netlist Example C e—
B 000 [
B
emit A emt B await C
emit D, present E then enit B end
Entry 7 N

\\\

D=
/
B

Exit | —

Control-Flow Graph-Bas

Key insight: Esterel looks I|kea|mperat|ve Ianguage SO
treat it as such o

Esterel has a fairly natural trayeﬂatlon into a concurrent\
control-flow graph / AN

Trick is simulating the conéurrency

Concurrent instructions in most Esterel programs can be |

scheduled statically J e ‘

Use this schedule to/bund code with EXBTIQII context
switches in it /

Overview

emit B;
present C then
emit D end;

loop
present B then
emit C end;

if ((s0&3) ==1) {
if () {

if (s1>>1)
sl =3;
else {
if ((s3&3) ==1) {
s3 =2, t3 = L1;

enc } else {
end t3 = L2;
NV }
Esterel Concurrent $egyggﬂgl C code

Source CFG /Y\ CFG \
\\

Split at Pauses

every R do

loop
await A;
emit B;
present C then

emit D end;

pause

end

loop

pause
end
end \

Finished Translating

every R do
loop
await A;
emit B;
present C then
emit D end,;
pause
end
[

loop

pause
end
end \

present B ther/
emit C end;

present B ther/
emit C end;

/

Translate every

every R do
loop
await A;
emit B;
present C then
emit D end;
pause /
end [

loop A

present B ther/ \
emit C end;

pause /

end
end \

Add Code Between Pauses

every R do
loop
await A;
emit B;
present C then
emit D end,;
pause
end
[

loop

pause
end
end \

every R do
loop
await A;
emit B;
present C then
emit D end,;
pause
end
[

loop

pause
end
end \

present B ther/
emit C end;

present B ther/
emit C end;

Add Threads

every R do
loop
await A;
emit B;
present C then
emit D end;
pause
end

loop

pause /
end
end \

present B ther/
emit C end;

Translate Second Thread

every R do
loop
await A;
emit B;
present C then
emit D end;
pause
end

loop

pause
end
end \

present B ther/
emit C end;

Context Switch

Control-flow Approach C

Scales as well as the netlist compiler, but produces muc
faster code, almost as fast as automata—

=)

~

Not an easy framework for ch;ck/i/r'lg causality

Static scheduling reqwrempnt more restrictive than netlist
compiler

This compiler rejects sonfle programs the others accept

Only implementation hldmg ‘within Synopsys CoCentric
System Studio. Will ﬁrobably never be used industrially.

~

See my recent IEEE Transactlons on Computer -Aided
Design paper for details

Context Switch

[=2] [=1]

What To Understand Abo

Synchronous model of time
* Time divided into sequence of discrete instants
* Instructions either run ang%érminate in the \
sameinstant or explicitly’in later instants AN
/

Idea of signals and broadéast

* “Variables” that take anctly one value each instant ““
and don't persist e |

\. \
» Coherence rulg/all writers run before\gny readers
/ \ \
. / \ \ /
Causality Issues \ \ /

. Contradlctory programs ‘ ,/

e

* How Esterel decides whether a program is correct

\

Run Right Thread

=] [
=
. —
B
B 0 [
B
What To Understand About Esterel====ss
T
B
Compilation techniques
Automata: Fast code, Doesn't scale—

Netlists: Scales well, Slow co;zlé/, Good for causality

/
Control-flow: Scales well, Fast code, Bad at causality \

