
The Synchronous Language Esterel
COMS W4995-02

Prof. Stephen A. Edwards
Fall 2002

Columbia University
Department of Computer Science

The Esterel Language

Developed by Gérard Berry
starting 1983

Originally for robotics applications

Imperative, textual language

Synchronous model of time like
that in digital circuits

Concurrent

Deterministic

A Simple Example

The specification:

The output O should occur when inputs A and B
have both arrived. The R input should restart this
behavior.

A First Try: An FSM

BR’/ AR’/

ABR’/O

R/

AR’/O

R/

BR’/O

R/

The Esterel Version

module ABRO: Esterel programs
built from modulesinput A, B, R;

Each module has an interface
of input and output signals

output O;

loop
[await A || await B];
emit O

each R

end module

Much simpler since language includes notions of signals,
waiting, and reset.

The Esterel Version

module ABRO:
input A, B, R;
output O;

loop

loop...each statement
implements reset

[await A ||

|| runs the two awaits
in parallel

await B

await waits for the
next cycle where
its signal is present

];
emit O

each R

end module

The Esterel Version

module ABRO:
input A, B, R;
output O;

loop
[await A || await B]

Parallel terminates when
all its threads have

;
emit O

Emit O makes signal O present
when it runs

each R

end module

Basic Ideas of Esterel
Imperative, textual language
Concurrent
Based on synchronous model of time:

• Program execution synchronized to an external clock

• Like synchronous digital logic

• Suits the cyclic executive approach

Two types of statements:

• Combinational statements, which take “zero time”
(execute and terminate in same instant, e.g., emit)

• Sequential statements, which delay one or more
cycles (e.g., await)

Uses of Esterel

Wristwatch

• Canonical example

• Reactive, synchronous, hard real-time

Controllers, e.g., for communication protocols

Avionics

• Fuel control system

• Landing gear controller

• Other user interface tasks

Processor components (cache controller, etc.)

Advantages of Esterel

Model of time gives programmer precise timing control

Concurrency convenient for specifying control systems

Completely deterministic

• Guaranteed: no need for locks, semaphores, etc.

Finite-state language

• Easy to analyze

• Execution time predictable

• Much easier to verify formally

Amenable to both hardware and software implementation

Disadvantages of Esterel

Finite-state nature of the language limits flexibility

• No dynamic memory allocation

• No dynamic creation of processes

Little support for handling data; limited to simple
decision-dominated controllers

Synchronous model of time can lead to overspecification

Semantic challenges:

• Avoiding causality violations often difficult

• Difficult to compile

Limited number of users, tools, etc.

Esterel’s Model of Time

The standard CS model (e.g., Java’s) is asynchronous:
threads run at their own rate. Synchronization is through
calls to wait() and notify().

Esterel’s model of time is synchronous like that used in
hardware. Threads march in lockstep to a global clock.

Time

Clock tick

Signals

Esterel programs communicate through signals

These are like wires

Each signal is either present or absent in each cycle

Can’t take multiple values within a cycle

Presence/absence not held between cycles

Broadcast across the program

Any process can read or write a signal

Basic Esterel Statements

emit S

Make signal S present in the current cycle

A signal is absent unless emitted in that cycle.

pause

Stop for this cycle and resume in the next.

present S then s1 else s2 end

Run s1 immediately if signal S is present in the current
cycle, otherwise run s2

Simple Example

module Example1:
output A, B, C;

emit A;
present A then

emit B
end;
pause;
emit C

end module

A
B

C

Signal Coherence Rules

Each signal is only present or absent in a cycle,never both

All writers run before any readers do

Thus

present A else
emit A

end

is an erroneous program. (Deadlocks.)

The Esterel compiler rejects this program.

Advantage of Synchrony

Easy to regulate time

Synchronization is free (e.g., no Bakers’ algorithm)

Speed of actual computation nearly uncontrollable

Allows function and timing to be specified independently

Makes for deterministic concurrency

Explicit control of “before” “after” “at the same time”

Time Can Be Controlled Precisely

This guarantees every 60th S an M is emitted

every 60 S do
every invokes its body every 60th Semit M

emit takes no time (cycles)end

S S S S S

M M

1 · · · 59 60 61 · · · 120

The || Operator

Groups of statements separated || by run concurrently
and terminate when all groups have terminated

[
emit A; pause; emit B;

||
pause; emit C; pause; emit D

];
emit E

A B
C D

E

Communication Is Instantaneous

A signal emitted in a cycle is visible immediately

[
pause; emit A; pause; emit A

||
pause; present A then emit B end

]

A A
B

Bidirectional Communication

Processes can communicate back and forth in the same
cycle

[
pause; emit A;
present B then emit C end;
pause; emit A

||
pause; present A then emit B end

]

A A
B
C

Concurrency and Determinism

Signals are the only way for concurrent processes to
communicate

Esterel does have variables, but they cannot be shared

Signal coherence rules ensure deterministic behavior

Language semantics clearly defines who must
communicate with whom when

The Await Statement

The await statement waits for a particular cycle await S
waits for the next cycle in which S is present

[
emit A ; pause ; pause; emit A

||
await A; emit B

]

A A
B

The Await Statement

Await normally waits for a cycle before beginning to check

await immediate also checks the initial cycle

[
emit A ; pause ; pause; emit A

||
await immediate A; emit B

]

A A
B

Loops

Esterel has an infinite loop statement

Rule: loop body cannot terminate instantly

Needs at least one pause, await, etc.

Can’t do an infinite amount of work in a single cycle

loop
emit A; pause; pause; emit B

end

A A A A
B B B

Loops and Synchronization

Instantaneous nature of loops plus await provide very
powerful synchronization mechanisms

loop
await 60 S;
emit M

end

S S S S S

M M

1 · · · 59 60 61 · · · 120

Preemption

Often want to stop doing something and start doing
something else

E.g., Ctrl-C in Unix: stop the currently-running program

Esterel has many constructs for handling preemption

The Abort Statement

Basic preemption mechanism

General form:

abort
statement

when condition

Runs statement to completion. If condition ever holds,
abort terminates immediately.

The Abort Statement

abort
pause;
pause;
emit A

when B;
emit C

A
C

Normal Termination

B
C

Aborted termination

B
C

Aborted termination;
emit A preempted

B A
C

Normal Termination
B not checked
in first cycle
(like await)

Strong vs. Weak Preemption

Strong preemption:

• The body does not run when the preemption
conditionholds

• The previous example illustrated strong preemption

Weak preemption:

• The body is allowed to run even when the
preemptioncondition holds, but is terminated
thereafter

• “weak abort” implements this in Esterel

Strong vs. Weak Abort

Strong abort
emit A does not run

abort
pause;
pause;
emit A;
pause

when B;
emit C

B
C

Weak abort
emit A runs

weak abort
pause;
pause;
emit A;
pause

when B;
emit C

A
B
C

Strong vs. Weak Preemption

Important distinction

Something may not cause its own strong preemption

Erroneous

abort
pause; emit A

when A

OK

weak abort
pause; emit A

when A

The Trap Statement

Esterel provides an exception facility for weak preemption

Interacts nicely with concurrency

Rule: outermost trap takes precedence

The Trap Statement

trap T in
[

pause;
emit A;
pause;
exit T

||
await B;
emit C

]
end trap;
emit D

A D Normal termination
from first process

A
B
C D Emit C also runs

A B
C
D

Second process
allowed to run
even though
first process
has exited

Nested Traps

trap T1 in
trap T2 in
[

exit T1
||

exit T2
]
end;
emit A

end;
emit B

Outer trap takes
precedence; control
transferred directly to the
outer trap statement.
emit A not allowed to run.

B

The Suspend Statement

Preemption (abort, trap) terminate something, but what if
you want to resume it later?

Like the unix Ctrl-Z

Esterel’s suspend statement pauses the execution of a
group of statements

Only strong preemption: statement does not run when
condition holds

The Suspend Statement

suspend
loop

emit A; pause; pause
end

when B

A A B A B A

B delays emission
of A by one cycle

B prevents A
from being emitted here;
resumed next cycle

Causality

Unfortunate side-effect of instantaneous communication
coupled with the single valued signal rule

Easy to write contradictory programs, e.g.,

present A else emit A end

abort pause; emit A when A

present A then nothing end; emit A

These sorts of programs are erroneous; the Esterel
compiler refuses to compile them.

Causality

Can be very complicated because of instantaneous
communication

For example, this is also erroneous

abort
pause;
emit B

Emission of B
indirectly causes
emission of Awhen A

||
pause;
present B then emit A end

Causality

Definition has evolved since first version of the language

Original compiler had concept of “potentials”

Static concept: at a particular program point, which
signals could be emitted along any path from that point

Latest definition based on “constructive causality”

Dynamic concept: whether there’s a “guess-free proof”
that concludes a signal is absent

Causality Example

emit A;
present B then emit C end;

Red statements
reachable

present A else emit B end;

Considered erroneous under the original compiler

After emit A runs, there’s a static path to emit B Therefore,
the value of B cannot be decided yet

Execution procedure deadlocks: program is bad

Causality Example

emit A;
present B then emit C end;

Red statements
reachable

present A else emit B end;

Considered acceptable to the latest compiler

After emit A runs, it is clear that B cannot be emitted
because A’s presence runs the “then” branch of the
second present

B declared absent, both present statements run

Compiling Esterel

Semantics of the language are formally defined and
deterministic

It is the responsibility of the compiler to ensure the
generated executable behaves correctly w.r.t. the
semantics

Challenging for Esterel

Compilation Challenges

• Concurrency

• Interaction between exceptions and concurrency

• Preemption

• Resumption (pause, await, etc.)

• Checking causality

• Reincarnation
Loop restriction prevents most statements from executing
more than once in a cycle

Complex interaction between concurrency, traps, and loops
allows certain statements to execute twice or more

Automata-Based Compilation

Key insight: Esterel is a finite-state language

Each state is a set of program counter values where the
program has paused between cycles

Signals are not part of these states because they do not
hold their values between cycles

Esterel has variables, but these are not considered part of
the state

Automata Compiler Example

loop
emit A;
await C;
emit B;
pause

end

void tick() {
static int s = 0;
A = B = 0;

switch (s) {
case 0:

A = 1;
s = 1;
break;

case 1:
if (C) {

B = 1; s = 0;
}
break;

}
}

Automata Compiler Example

emit A;
emit B;
await C;
emit D;
present E then

emit B
end

switch (s) {
case 0:

A=1;
B=1;
s=1;
break;

case 1:
if (C) {

D=1;
if (E) B=1;
s=2;

}
break;

case 2:
}

Automata Compilation Considered

Very fast code (Internal signaling can be compiled away)

Can generate a lot of code because concurrency can
cause exponential state growth

n-state machine interacting with another n-state machine
can produce n

2 states

Language provides input constraints for reducing states

• “these inputs are mutually exclusive”

relation A # B # C;

• “if this input arrives, this one does, too”

relation D => E;

Automata Compilation

Not practical for large programs

Theoretically interesting, but don’t work for most programs
longer than 1000 lines

All other techniques produce slower code

Netlist-Based Compilation

Key insight: Esterel programs can be translated into
Boolean logic circuits

Netlist-based compiler:

Translate each statement into a small number of logic
gates, a straightforward, mechanical process

Generate code that simulates the netlist

Netlist Example

emit A; emit B; await C;
emit D; present E then emit B end

Entry

A

B

D

C

E

Exit

Netlist Compilation Considered

Scales very well

• Netlist generation roughly linear in program size

• Generated code roughly linear in program size

Good framework for analyzing causality

• Semantics of netlists straightforward

• Constructive reasoning equivalent to three-valued
simulation

Terribly inefficient code

• Lots of time wasted computing irrelevant values

• Can be hundreds of time slower than automata

• Little use of conditionals

Netlist Compilation

Currently the only solution for large programs that appear
to have causality problems

Scalability attractive for industrial users

Currently the most widely-used technique

Control-Flow Graph-Based

Key insight: Esterel looks like a imperative language, so
treat it as such

Esterel has a fairly natural translation into a concurrent
control-flow graph

Trick is simulating the concurrency

Concurrent instructions in most Esterel programs can be
scheduled statically

Use this schedule to build code with explicit context
switches in it

Overview

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C

D

s=2 s=1

R

1 s 2

A
B

t=0 t=1

B
C

0 t 1

C
D

s=2 s=1

if ((s0 & 3) == 1) {

if (S) {

s3 = 1; s2 = 1; s1 = 1;

} else

if (s1 >> 1)

s1 = 3;

else {

if ((s3 & 3) == 1) {

s3 = 2; t3 = L1;

} else {

t3 = L2;

}

Esterel Concurrent Sequential C code

Source CFG CFG

Translate every

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

Add Threads

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

Split at Pauses

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

s=2 s=1

Add Code Between Pauses

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B

C
D

s=2 s=1

Translate Second Thread

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C
D

s=2 s=1

Finished Translating

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C
D

s=2 s=1

Add Dependencies and Schedule

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C
D

s=2 s=1

Run First Node

R

1 s 2

A

B B

C C
D

s=2 s=1

R

Run First Part of Left Thread

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

Context Switch

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

Run Right Thread

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

Context Switch

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1

Finish Left Thread

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1
C

D

s=2 s=1

Completed Example

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1
C

D

s=2 s=1

Control-flow Approach Considered

Scales as well as the netlist compiler, but produces much
faster code, almost as fast as automata

Not an easy framework for checking causality

Static scheduling requirement more restrictive than netlist
compiler

This compiler rejects some programs the others accept

Only implementation hiding within Synopsys’ CoCentric
System Studio. Will probably never be used industrially.

See my recent IEEE Transactions on Computer-Aided
Design paper for details

What To Understand About Esterel

Synchronous model of time

• Time divided into sequence of discrete instants

• Instructions either run and terminate in the
sameinstant or explicitly in later instants

Idea of signals and broadcast

• “Variables” that take exactly one value each instant
and don’t persist

• Coherence rule: all writers run before any readers

Causality Issues

• Contradictory programs

• How Esterel decides whether a program is correct

What To Understand About Esterel

Compilation techniques

Automata: Fast code, Doesn’t scale

Netlists: Scales well, Slow code, Good for causality

Control-flow: Scales well, Fast code, Bad at causality

