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Abstract

This paper describes our experience porting a transport-layer
cryptography service to an embedded microcontroller. We de-
scribe some key development issues and techniques involved
in porting networked software to a connected, limited resource
device such as the Rabbit RMC2000 we chose for this case
study. We examine the effectiveness of a few proposed port-
ing strategies by examining important program and run-time
characteristics.

1 Introduction

Embedded systems present a different software engineering
problem. These systems are unique in that the hardware and
the software are tightly integrated. The limited nature of an
embedded systems operating environment require a different
approach to developing and porting software. In this paper, we
discuss the key issues in developing and porting a Unix sys-
tem level transport-level security (TLS) service to an embed-
ded microcontroller. We discuss our design decisions and ex-
perience porting this service using Dynamic C, a C variant, on
the RMC2000 microcontroller from Rabbit Semiconductor1.
The main challenges came when APIs for operating-system
services such as networking were either substantially different
or simply absent.

Porting software across platforms is such a common and
varied software engineering exercise that much commercial
and academic research has been dedicated to identifying pit-
falls, techniques, and component analogues for it. Porting soft-
ware has been addressed by high level languages [2, 12],
modular programming [11], and component based abstraction,
analysis and design techniques [17]. Despite the popularity of
these techniques, they are of limited use when dealing with the
limited and rather raw resources of a typical embedded sys-
tem. In fact, these abstraction mechanisms tend to consume
more resources, especially memory, making them impractical
for microcontrollers. Though some have tried to migrate some
of these abstractions to the world of embedded systems [9],
porting applications in a resource-constrained system still re-
quires much reengineering.

This paper presents our experiences porting a small net-
working service to an embedded microcontroller with an eye
toward illustrating what the main problems actually are. Sec-
tion 2 introduces the network cryptographic service we ported.
Section 3 describes some relevant related work, and Section 4
describes the target of our porting efforts, the RMC 2000 de-

1www.rabbitsemiconductor.com

velopment board.

Section 5 describes the issues we encountered while porting
the cryptographic network service to the development board,
Section 6 describes the performance experiments we con-
ducted, and finally Section 7 summarizes our findings.

2 Network Cryptographic Services

For our case study, we ported “iSSL,”2 a public-domain im-
plementation of the Secure Sockets Layer (SSL) protocol [6],
a Transport Layer Security (TLS) standard proposed by the
IETF [5]. SSL is a protocol that layers on top of TCP/IP to pro-
vide secure communications, e.g., to encrypt web pages with
sensitive information.

Security, unfortunately, is not cheap. Establishing and main-
taining a secure connection is a computationally-intensive
task; negotiating a SSL session can signifigantly degrade
server performance, potentially limiting the number of simul-
taneous sessions. Goldberg et al. [10] observed it reducing
throughput by an order of magnitude.

iSSL is a cryptographic library that layers on top of the
Unix sockets layer to provide secure point-to-point commu-
nications. After a normal unencrypted socket is created, the
iSSL API allows a user to bind to the socket and then do se-
cure read/writes on it.

To gain experience using the library, we first implemented a
simple Unix service that used the iSSL library to establish a se-
cure redirector. Later, we ported this service to the RMC2000.

Because SSL forms a transparent layer on top of TCP, it can
be easily factored out of the server and placed in separate hard-
ware. Many commercial systems use coprocessor cards that
perform SSL functions to offload work from the server’s main
processor. Our case study implements a similar service.

The iSSL package uses the RSA and AES cipher algorithms
and can generate session keys and exchange public keys. Be-
cause the RSA algorithm uses a difficult-to-port “bignum”
package, we only ported the AES cipher, which uses the Ri-
jndael algorithm [3]. By default, iSSL supports key lengths
of 128, 192, or 256 bits and block lengths of 128, 192, and
256 bits, but to keep our implementation simple, we only im-
plemented 128-bit keys and blocks. During porting, we also
referred to the AESCrypt implementation developed by Eric
Green and Randy Kaelber3.

2http://sourceforge.net/projects/issl
3http://aescrypt.sourceforge.net
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3 Related Work

Cryptographic services for transport layer security (TLS) have
long been available as operating system and application server
services [15]. The concept of an embedded TLS service or cus-
tom ASIC for stream ciphering are commercially available as
SSL/TLS accelerator products from vendors such as Sun Mi-
crosystems and Cisco. They operate as black boxes and the
development issues to make these services available to em-
bedded devices have been rarely discussed. Though the per-
formance of various cryptographic algorithms such as AES
and DES have been examined on many systems [16], includ-
ing embedded devices [18], a discussion on the challenges of
porting complete services to a device have not received such a
treatment.

The scope of embedded systems development has been
covered in a number of books and articles [8, 7]. Optimiza-
tion techniques at the hardware design level and at the pre-
processor and compiler level are well-researched and bench-
marked topics [8, 14, 19]. Embedded programming guidelines
for optimization, style and robustness are outlined for specific
languages such as ANSI C [1]. Design patterns have even been
proposed to increase portability and leverage reuse among de-
vice configurations for embedded software [4].

Overall, we found the issues involved in porting software to
the embedded world have not been written about extensively,
and are largely considered “just engineering” doomed to be
periodically reinvented. Our hope is that this paper will help
engineers be more prepared in the future.

4 The RMC2000 Environment

Typical for a small embedded system, the RMC2000 TCP/IP
Development Kit includes 512k of flash RAM, 128k SRAM,
and runs a 30 MHz, 8-bit Z80-based microcontroller (a Rabbit
2000). While the Rabbit 2000, like the Z80’s, manipulates 16-
bit addresses, it can access up to 1 MB through bank switching.

It includes a 10Base-T network interface and comes with
software implementing TCP/IP, UDP and ICMP. The devel-
opment environment includes compilers and diagnostic tools,
and the board has a 10-pin programming port to interface with
the development environment.

4.1 Dynamic C

The Dynamic C language, developed in concert with Rabbit
microcontrollers, is an ANSI C variant with many extensions
to support the Rabbit 2000 in embedded system applications.
For example, the language directly supports cooperative and
preemptive multitasking, battery-backed variables, and atom-
icity guarantees for shared multibyte variables.

Unlike ANSI, Dynamic C’s function-local variables are
static by default. While this can be overriden with a di-
rective, ignoring it can dramatically change program behavior.

Dynamic C does not support the #include directive, us-
ing instead #use, which gathers precompiled function proto-
types from libraries. It took some effort to decide which #use
directives should replace the many #include directives in
the source files.

Dynamic C omits and modifies some ANSI C behavior. Bit
fields and enumerated types are not supported. There are also
minor differences in the extern and register keywords.
As mentioned earlier, the default storage class for variables
is static, not auto, which can dramatically change the be-
havior of recursively-called functions. Variables initialized in a
declaration are stored in flash memory and cannot be changed.

Dynamic C’s support for inline assembly is more compre-
hensive than most C implementations, and it can also inte-
grate C into assembly code, as in the following:

#asm nodebug
InitValues::

ld hl,0xa0;
c start_time = 0; // Inline C
c counter = 256; // Inline C

ret
#endasm

We used the inline assembly feature in the error handling
routines that caught exceptions thrown by the hardware or li-
braries, such as divide-by-zero. We could not rely on an op-
erating system to handle these errors, so instead we specified
an error handler using the defineErrorHandler(void
*errfcn) system call. Whenever the system encounters an
error, the hardware passes information about the source and
type of error on the stack and calls this user-defined error han-
dler. In our implementation, we used (simple) inline assembly
statements to retrieve this information. Because our applica-
tion was not designed for high reliability, we simply ignored
most errors.

4.2 Multitasking in Dynamic C

Dynamic C provides both cooperative multitasking, through
costatements and cofunctions, and preemptive multitasking
through either the slice statement or a port of Labrosse’s
µC/OS-II real-time operating system [13].

Dynamic C’s costatements provide multiple threads of
control through independent program counters that may be
switched among explicitly, such as in this example:

for (;;) {
costate {

waitfor( tcp_packet_port_21() );
// handle FTP connection
yield(); // Force context switch

}
costate {

waitfor( tcp_packet_port_23() );
// handle telnet connection

}
}

The yield statement immediately passes control to an-
other costatement. When control returns to the costatement
that has yielded, it resumes at the statement following the
yield. The statement waitfor(expr), which provides a
convenient mechanism for waiting for a condition to hold, is
equivalent to while (!expr) yield();.
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// Interrupts disabled during changes to a, b, and c
// Updates guaranteed atomic
shared float a, b, c;

main() {
protected int state1; // Battery-backed
...
// restore protected variables
_sysIfSoftReset()

}

// place func1 in root memory
root int func1() { ... }

// Place following assembly code in root memory
#memmap root
#asm root
...

#endasm

// place func2 in extended memory
xmem int func2() { ... }

Figure 1: Fragment illustrating various Dynamic-C-specific
storage class specifiers.

Cofunctions are similar, but also take arguments and may
return a result.

In our port, we used costatements to handle multiple con-
nections with multiple processes. We did not use µC/OS-II.

4.3 Storage Class Specifiers

To avoid certain race conditions, Dynamic C generates code
that disables interrupts while multibyte variables marked
shared are being changed, guaranteeing atomic updates.

For variables marked protected, Dynamic C gener-
ates extra code that copies their value to battery-backed
RAM before every modification. Backup values are copied
to main memory when when system is restarted or when
sysIsSoftReset() is called. We did not need this fea-

ture in this port.
The Rabbit 2000 microcontroller has a 64K address space

but uses bank-switching to access 1M of total memory. The
lower 49.5K is fixed, “root” memory, and the top 8K is bank-
switched access to the remaining memory. A user can explic-
itly request a function to be located in either root or extended
memory using the storage class specifiers root and xmem
(Figure 1).

We had to explicitly request certain functions, such the error
handler, to be located in root memory, but we let the compiler
place all the other functions.

4.4 Function Chaining

Dynamic C provides function chaining, which allows seg-
ments of code to be embedded within one or more functions.
Invoking a named function chain causes all the segments be-
longing to that chain to execute. Such chains enable initializa-
tion, data recovery, or other kinds of tasks on request. Our port

did not use this feature.

// Create a chain named ‘‘recover’’ and add three functions
#makechain recover
#funcchain recover free_memory
#funcchain recover declare_memory
#funcchain recover initialize

// Invoke all three functions in the chain in some sequence
recover();

5 Porting and Development Issues

A program rarely runs unchanged on a dramatically different
platform; something always has to change. The fundamental
question is, then, how much must be changed or rewritten, and
how difficult these rewrites will be.

We encountered three broad classes of porting problems that
demanded code rewrites. The first, and most common, was
the absence of certain libraries and operating system facili-
ties. This ranged from fairly simple (e.g., Dynamic C does
not provide the standard random function), to fairly difficult
(e.g., the protocols include timeouts, but Dynamic C does not
have a timer), to virtually impossible (e.g., the iSSL library
makes some use of a filesystem, something not provided by the
RMC2000 environment). Our solutions to these ranged from
creating a new implementation of the library function (e.g.,
writing a random function) to working around the problem
(e.g., changing the program logic so it no longer read a hash
value from a file) to abandoning functionality altogether (e.g.,
our final port did not implement the RSA cipher because it re-
lied on a fairly complex “bignum” library that we considered
to complicated to rework).

A second class of problem stemmed from differing APIs
with similar functionality. For example, the protocol for ac-
cessing the RMC2000’s TCP/IP stack differs quite a bit from
the BSD sockets used within iSSL. Figure 2 illustrates some
of these differences. While solving such problems is generally
much easier than, say, porting a whole library, reworking the
code is tedious.

A third class of problem required the most thought. Often,
fundamental assumptions made in code designed to run on
workstations or servers, such as the existence of a filesystem
with nearly unlimited capacity (e.g., for keeping a log), are
impractical in an embedded systems. Logging and somewhat
sloppy memory management that assumes the program will
be restarted occasionally to cure memory leaks are examples
of this. The solutions to such problems are either to remove the
offending functionality at the expense of features (e.g., remove
logging altogether), or a serious reworking of the code (e.g., to
make logging write to a circular buffer rather than a file).

5.1 Interrupts

We used the serial port on the RMC2000 board for debugging.
We configured the serial interface to interrupt the processor
when a character arrived and then either prompt the system to
send a status message back out the port, reset the application,
or reset the application maintaining program state.
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int echo_server() {
int sock, newsock, len;
struct sockaddr_in addr;
char buf[LEN];

if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0)
return -1;

memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_ANY);
addr.sin_port = htons(MYPORT);
if ( bind(sock, (struct sockaddr *) &addr,

sizeof(struct sockaddr_in)) < 0 ) return -1;
if ( listen(sock, LISTENQ) < 0 ) return -1;
for (;;) {
if ((newsock = accept(sock, NULL, NULL) ) < 0 )

return -1;
if ((len = recv(newsock, buf, LEN, 0)) < 0)

return -1;
if (send(newsock, buf, len, 0) < 0) return -1;
close(conn_s);

}
}

int echo_server()
{

tcp_Socket sock;
int status;
char buf[LEN];

sock_init();
for (;;) {
tcp_listen(&sock, PORT, 0, 0, NULL, 0);
sock_wait_established(&sock, 0, NULL, &status);
sock_mode(&sock, TCP_MODE_ASCII);
while (tcp_tick(&sock)) {

sock_wait_input(&sock, 0, NULL, &status);
if (sock_gets(&sock, buf, LEN))

sock_puts(&sock, buf);
}

}
}

(a) (b)

Figure 2: A comparison of (a) traditional BSD sockets-based code and (b) equivalent code in the Dynamic C environment
illustrating the significant differences in API.

A Unix operating environment provides a high-level mech-
anism for handling software interrupts:

main() {
signal(SIGINT, sigproc); // Register signal handler

}
void sigproc() { /* Handle the signal */ }

By contrast in Dynamic C, we had to handle all the details
ourselves. For example, to set up the interrupt from the serial
port, we had to enable the serial port to generate interrupts,
register the interrupt routine in the vector table, and finally en-
able the interrupt receiver.

main() {
// Set serial port A as input interrupt
// SADRShadow is pointer to value at register
WrPortI(SADR, &SADRShadow, 0x00);
// Register interrupt service routine
SetVectExtern2000(1, my_isr);
// Enable external INT0 on SA4, rising edge
WrPortI(I0CR, NULL, 0x2B);
/* Main program */
// Disable interrupt 0
WrPortI(I0CR, NULL, 0x00);

}

nodebug root interrupt void my_isr() {
/* handle interrupt */

}

We could have avoided the use of interrupts if we designed
the application to open another “debugging” network connec-
tion, but this would have made it impossible to debug a system
that had a networking-related bug.

5.2 Memory

A significant difference between general platform develop-
ment and embedded system development is memory. Most

embedded devices have very little memory in comparison to
a full fledged computer. Expecting to run into memory issues,
we used a well-defined taxonomy [20] to plan out memory
requirements. This turned out to be unnecessary, however, be-
cause out application had very modest memory requirements.

Dynamic C does not support the standard library functions
malloc and free. Instead, it provides the xalloc func-
tion that allocates extended memory only (arithmetic, there-
fore, cannot be performed on the returned pointer). More seri-
ously, there is no analogue to free; allocated memory cannot
be returned to a pool.

Instead of implementing our own memory management sys-
tem (which would have been awkward given the Rabbit’s
bank-switched memory map), we chose to remove all refer-
ences to malloc and statically allocate all variables. This
prompted us to drop support of the variable key and block sizes
in the iSSL library.

5.3 Program Structure

As we often found during the porting process, the original im-
plementation made use of high-level operating system func-
tions such as fork that were not provided by the rudimentary
environment on the RMC2000. This forced us to restructure
the program significantly.

The original TLS implementation handles an arbitrary num-
ber of connections using the typical BSD sockets approach
shown below. It first calls listen to begin listening for in-
coming connections, then calls accept to wait for a new in-
coming connection. Each request returns a new file descriptor
passed to a newly-forked process that handles the request.
Meanwhile, the main loop immediately calls accept to get
the next request.

listen(listen_fd)
for (;;) {
accept_fd = accept(listen_fd);
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for (;;) {
costate {
tcp_listen(socket1,TLS_PORT, ...);
while (sock_established(socket1) == 0) yield;
// handle request

}
costate {
tcp_listen(socket2,TLS_PORT, ...);
while((0 == sock_established(socket2))) yield;
// handle request

}
costate {
tcp_listen(socket2,TLS_PORT, ...);
while((0 == sock_established(socket2))) yield;
// handle request

}
costate {

// drive TCP stack
tcp_tick(NULL);

}
}

Figure 3: The structure of the main loop of the TLS server,
which can handle at most three requests because it is limited
to four processes.

if ((childpid = fork()) == 0) {
// process request on accept fd
exit(0); // terminate process

}
}

Unfortunately, the Dynamic C environment provides nei-
ther the standard Unix fork nor an equivalent of accept.
In the RMC 2000’s TCP implementation, the socket bound
to the port also handles the request, so each connection is
required to have a corresponding call to tcp listen. Fur-
thermore, although Dynamic C provides concurrent processes
in the form of costatements, their number is fixed at program
compile-time.

Thus, to handle multiple connections and processes, we split
the application into four processes: three processes to handle
requests (allowing a maximum of three connections), and one
to drive the TCP stack (Figure 3). We could easily increase the
number of processes (and hence simultaneous connections) by
adding more costatements, but the program would have to be
re-compiled.

6 Experimental Results

To estimate which optimization techniques were worthwhile,
we compared the C implementation of the AES algorithm
(Rijndael) included with the iSSL library with a hand-coded
assembly version supplied by Rabbit Semiconductor. A test-
bench that pumped keys through the two implementations of
the AES cipher showed that the handcrafted assembly imple-
mentation ran faster than the C port by a factor of 15–20.

We tried a variety of optimizations on the C code (e.g.,
moved data to root memory, unrolled some loops, turned off
debugging, enabled compiler optimization), but this only im-
proved its run time by perhaps 20%.

Code size appeared uncorrelated to execution speed. The as-
sembly implementation was 9% smaller than the C, but ran
more than an order of magnitude faster.

Debugging and testing consumed the majority of the devel-
opment time. Many of these problems came from our lack of
experience with Dynamic C and the RMC2000 platform, but
unexpected, undocumented, or simply contradictory behavior
of the hardware or software and its specifications also pre-
sented challenges.

7 Conclusions

We described our experiences porting a library and server
for transport-level security protocol (specifically iSSL) onto
a small embedded development board (the RMC 2000, based
on the Z80-inspired Rabbit 2000 microcontroller). While the
Dynamic C development environment supplied with the board
gave useful, necessary support for some hardware idiosyn-
crasies (e.g., its bank-switched memory architecture), support
for concurrent programming (through language-level support
for cooperative multitasking in the form of costatements and
cofunctions), and a TCP/IP stack, porting the service, origi-
nally designed for a Unix-like environment, was not trivial.

The biggest challenges revolved around different or miss-
ing APIs, such as the substantial difference between BSD-like
sockets and provided TCP/IP implementation or the simple ab-
sence of a filesystem. Our solutions to these problems involved
either writing substantial amounts of additional code to imple-
ment the missing library functions or reworking the original
code to use (or simply avoid) the API.

Finally, we compared the speed of our direct port of a
C implementation of the RSA (Rijndael) ciper with a hand-
optimized assembly version and found a disturbing factor of
15–20 in performance in favor of the assembly.

From all of this, we conclude that there must be a better way.
Understanding and dealing with differences in operating envi-
ronment (effectively, the API) is a tedious, error-prone task
that should be automated, yet we know of no work beyond
high-level language compilers that confront this problem di-
rectly.
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