
The Standard Concurrency Model
COMS W4995-02

Prof. Stephen A. Edwards
Fall 2002

Columbia University
Department of Computer Science



The Standard Concurrency Model

Provided by most operating systems, both timesharing
and real-time.

Multiple, unsynchronized threads of control
updating shared memory simultaneously.

How to make their collective behavior determinstic or at
least more disciplined?

(Most material taken from Silberschatz, Galvin, and
Gagne, Operating Systems Concepts).



Races: Two Simultaneous Writes

Thread 1
count = 3

Thread 2
count = 2

At the end, does count contain 2 or 3?



Races: A Read and a Write

Thread 1
if (count == 2)

return TRUE;
else

return FALSE;

Thread 2
count = 2

If count was 3 before these run, does Thread 1 return
TRUE or FALSE?



Read-modify-write: Even worse

Consider two thread trying to execute count += 1 and
count += 2 simultaneously.

Thread 1
tmp1 = count
tmp1 = tmp1 + 1
count = tmp1

Thread 2
tmp2 = count
tmp2 = tmp2 + 2
count = tmp2

If count is initially 1, what outcomes are possible?

Must consider all possible interleavings.



Read-modify-write: Interleaving 1

Thread 1
tmp1 = count (=1)

tmp1 = tmp1 + 1 (=2)
count = tmp1 (=2)

Thread 2

tmp2 = count (=1)
tmp2 = tmp2 + (=3)
count = tmp2 (=3)



Read-modify-write: Interleaving 2

Thread 1

tmp1 = count (=1)
tmp1 = tmp1 + 1 (=2)
count = tmp1 (=2)

Thread 2
tmp2 = count (=1)

tmp2 = tmp2 + 2 (=3)
count = tmp2 (=3)



Read-modify-write: Interleaving 3

Thread 1
tmp1 = count (=1)
tmp1 = tmp1 + 1 (=2)
count = tmp1 (=2)

Thread 2

tmp2 = count (=2)
tmp2 = tmp2 + 2 (=4)
count = tmp2 (=4)



The Critical-Section Problem

Similar considerations apply to any shared resouce (e.g.,
all types of I/O).

Most things need their states updated atomically to
ensure an invariant.

Classically, this problem is cast as the Critical-Section
Problem.



The Critical-Section Problem

Given a system of n processes P1, . . . , Pn, each of
which contains a segment of code called a critical
section, ensure that no two processes are ever
executing their critical sections simultaneously.

Any reasonable solution must guarantee three properties:

1. Safety: If Pk is in its critical region, none of Pi6=k are.

2. Fairness: If Pj1 , . . . , Pjk
have all requested to enter

their critical regions, one of them will immediately.

3. Bounded Fairness: Only a bounded number of other
processes may enter their critical regions once Pk

signals its request to do so.



Comments on Critical Sections

There should be one critical section per shared resource.

Multiple shared resources mean multiple sets of critical
sections.

Classical problem statement only considers single shared
resource.

Actual programs
often have many
different critical
section groups:

P1

CS1

CS2

P2

CS2

CS1

P3

CS1

CS1



The Two-Process Case

Thread 1
for (;;) {

wait_to_enter();

/* Critical section */
signal_exit();

/* other code */
}

Thread 2
for (;;) {

wait_to_enter();

/* Critical section */
signal_exit();

/* other code */
}



A Solution?

Thread 1
for (;;) {

while (turn != 1);

/* Critical section */
turn = 2;

/* other code */
}

Thread 2
for (;;) {

while (turn != 2);

/* Critical section */
turn = 1;

/* other code */
}

Does this work?



A Solution?

Thread 1
for (;;) {

while (turn != 1);

/* Critical section */
turn = 2;

/* other code */
}

Thread 2
for (;;) {

while (turn != 2);

/* Critical section */
turn = 1;

/* other code */
}

This forces execution of the two critical regions to
alternate (guarantees safety), but violates fairness.

If thread 2’s other code does not terminate, thread 1’s
critical region can only execute once more. That’s not fair.



The “After You” Solution
bool at_door[2];
int turn;

for (;;) {
at_door[0] = true;
turn = 1; /* “After you” */
/* Wait while friend at door and I said “after you” last */
while (at_door[1] && turn == 1);

/* Critical section */

at_door[0] = false;
/* other code */

}

Basic idea: writes to turn must be sequential.



Scenarios

If you’re the only one at the door,

1. You arrive at the door and wait.

2. You say “after you” to no one in particular.

3. You immediately notice nobody else is there and
proceed through the door.



Scenarios

If your friend arrives at nearly the same time,

1. You both arrive at the door and wait.

2. You and your friend both say “after you” at about the
same time.

3a. Your friend says “after you” last, so you proceed
through the door.

3b. You say “after you” last, so your friend proceeds
through the door.



Multiple-processs Solutions

Problem: What if three people try to go through the door?
Previous algorithm only determine who says “after you”
last (obviously, other person said it first).

We need an alternative.



The Bakery Algorithm

Model:

Now

Serving

34

(well, almost: no central sign)

Processes (try to) take turns choosing number, then defer
to the process with the lowest number.

One wrinkle: doesn’t guarantee unique numbers.

In the case of a tie, lowest-numbered process goes first.



The Bakery Algorithm
bool choosing[N]; /* True when process choosing */
int n[N]; /* Number held by process */

for (;;) {
choosing[i] = true;
n[i] = 1 + max(n[0], ..., n[N-1]);
choosing[i] = false;
for ( j = 0 ; j < N ; j++ ) {

while (choosing[j]); /* wait while choosing */
while (n[j] != 0 && /* wait while other */

(n[j] < n[i] || /* process is lower */
(n[j] == n[i] && j < i)));

/* Critical section */

n[i] = 0; /* Discard number */
/* other code */

}



Synchronization

Basic problem boils down making some operation atomic.

“After you” relies on writes to the “turn” variable to be
atomic (sequentialized).

The Bakery Algorithm relies on atomic reads and writes to
elements of the “number” array.

Processors designed for multiprocessing provide atomic
instructions:

• test-and-set (e.g., 68000)

• swap (e.g., x86, SPARC)

Implemented with a special, uninterruptable bus cycle.



Test-and-set

Pseudocode for the atomic test-and-set operation:

bool test_and_set(bool *flag) {
bool r = *flag;
*flag = true;
return r;

}

How to use test-and-set to implement mutual exclusion:

bool lock;

for (;;) {
while (test_and_set(&lock));
/* Critical section */
lock = false;
/* other code */

}



Atomic Swap

Pseudocode for atomic swap:

void swap(bool *a, bool *b) {
bool t = *a;
*a = *b;
b = t;

}

Implementing mutual exclusion:

bool lock;

for (;;) {
bool key = true;
while (key == true) swap(&lock, &key);
/* Critical section */
lock = false;
/* other code */

}



Semaphores

General solution to the shared resource problem

Due to Dijkstra, mid 1960s.

Limit resource usage to “no more than k processes”

(You choose k—Mutual exclusion a special case)

Implementation requires atomic operations



Semaphores
int resouces_available = 1; /* Shared */

void wait(int &s) {
while (s <= 0); /* Wait until resource available */
s--; /* Claim a resource */

}

void signal(int &s) {
s++; /* Relinquish a resource */

}

Some authors use Dijkstra’s original notation: “wait” was
“P” (proberen, “to test”) and “signal” was “V” (verhogen,
“to increment”).



Using Semaphores

Straightforward:

int my_sem = 1;

for (;;) {
wait(my_sem);

/* Critical section */

signal(my_sem);

/* Other code */
}



Implementing Sempahores

Tests and updates of s must be atomic.

On single-processor system, disabling interrupts suffices.

uni_wait(int &s) {
disable_int();
while (s <= 0) {
enable_int();
disable_int();

}
s--;
enable_int();

}

uni_signal(int &s) {
disable_int();
s++;
enable_int();

}

This trick doesn’t work on multiprocessor systems
because they run multiple processes simulataneously.



Busy Waiting

Disadvantage of all these schemes is that a process must
repeatedly check a condition when blocked:

void wait(int &s) {
while (s <= 0);
s--;

}

for (;;) {
while (test_and_set(&lock));
lock = false;

}

for (;;) {
at_door[0] = true; turn = 1;
while (at_door[1] && turn == 1);
at_door[0] = false;

}



Busy Waiting

Semaphores that busy wait sometimes called spinlocks

Acceptable in multiprocessor systems whose processes
have very short critical sections. Few wasted cycles.

Wasteful on a single processor: test repeated when
nothing changes.

Alternative is a more event-driven approach:

Put a process to sleep while it waits and wake it only when
something changes.



Blocking Semaphores
typedef struct {

int value; /* # of resources/blocked processes */
struct process *L; /* Linked list of processes */

} semaphore;

void wait(semaphore S) {
S.value--; /* < 0 counts blocked processes */
if (S.value < 0) {

add_this_process_to(S.L);/* we’re blocked */
block(); /* stop process */

}
}

void signal(semphore S) {
S.value++; /* one fewer blocked processes */
if (S.value <= 0) { /* at least one still blocked */

struct process P = select(S.L);
resume(P); /* unblock chosen process */

}
}



Ways to Misuse Semaphores

semphore S, Q;

wait(S);

wait(Q);

signal(S);

signal(Q);

wait(Q);

wait(S);

signal(Q);

signal(S);

Deadlock!

Lesson: Always acquire and release multiple locks in the
same order in all processes.



Ways to Misuse Semaphores

Replacing signal with wait:

semaphore S;

wait(S); /* OK */
/* Critical Section */
wait(S); /* Deadlock */



Ways to Misuse Semaphores

Reversing calls to signal and wait:

semaphore S;

signal(S); /* Oops: Allows other processes access */
/* Critical Section? (Not mutually exclusive) */
wait(S);

Program might appear to work correctly.



Critical Regions

High-level construct to help avoid certain stupid errors.
(Hypothetical language).

Declare a shared variable v of type T that must be
accessed within the body of a region statement.

v: shared T;

Region statement that blocks while other region is running
or the predicate doesn’t hold:

region v when (expr) { body }

Bodies of region statements guaranteed atomic.



Critical Region Queue Example
shared struct buffer { /* Accessed in a region */

int pool[N]; /* Buffer data */
int count, in, out;

};

void insert(int i) {
region buffer when (buffer.count < N) {

buffer.pool[buffer.in] = i;
buffer.in = (buffer.in + 1) % N;
buffer.count++;

}
}

int remove() {
region buffer when (buffer.count > 0) {

i = buffer.pool[buffer.out];
buffer.out = (buffer.out + 1) % N;
buffer.count--;

}
return i;

}



Monitors: Java’s Mechanism

Each Java object has a semaphore-like lock.

The synchronized keyword guarantees mutual
exclusion:

Counter c = new Counter;

synchronized(c) { /* Acquire c’s lock */
c.count(); /* Critical section */

} /* Release c’s lock */

Shared objects/variables not noted: programmer
responsible for ensuring shared objects are synchronized
appropriately.



Java Monitors

In an OO language, obvious thing is to lock “this”:

class Counter {
private long cnt; /* Java long R/W not atomic */
public void count() {

synchronized (this) {
cnt++;

}
}

}

Java provides a frequently-used shorthand:

class Counter {
private long cnt;
public synchronized void count() {

cnt++;
}

}


