
' $

FUNCTIONAL PROGRAMMING (1)
PROF. SIMON PARSONS

& %



' $

• Imperative programming is concerned with “how”.

• Functional or applicative programming is, by contrast, concerned
with “what”.

• It is based on the mathematics of the lambda calculus (Church as
opposed to Turing).

• “Programming without variables”.

• It is inherently concise, elegant, and difficult to create subtle
bugs in.

Functional programming Lecture 1 2& %



' $

Referential transparency

• The main (good) property of functional programming is
referential transparency.

• Every expression denotes a single value.

• This value cannot be changed by evaluating an expression or by
sharing it between different parts of the program.

• There can be no reference to global data.

• (Indeed there is no such thing as global data.)

• There are no side-effects, unlike in referentially opaque languages.

Functional programming Lecture 1 3& %



' $

program example(output)
var flag: boolean

function f(n:int): int
begin

if flag then f:= n
else f: 2*n

flag := not flag
end

begin
flag := true
writeln(f(1) + f(2))
writeln(f(2) + f(1))

end

Functional programming Lecture 1 4& %



' $

• What is the output?

Functional programming Lecture 1 5& %



' $

• Okay, so the answer is 5 followed by 4.

• This is odd since if these were mathematical functions,

f(1) + f(2) = f(2) + f(1)

for any f .

• But this is because mathematical functions are functions only of
their inputs.

• They have no memory.

• We can always tell what the value of a mathematical function
will be just from its inputs.

Functional programming Lecture 1 6& %



' $

• At the heart of the “problem” is fact that the global data flag
controls the value of f.

• In particular the assignment:

flag := not flag

is the thing that gives this behaviour.

• If we eliminate assignment, we eliminate this kind of behaviour.

• Variables are no longer placeholders for values that change.

• (They are much less variable than variables in imperative
programs).

Functional programming Lecture 1 7& %



' $

Simple functional programming in HOPE

• We start with a function that squares numbers.

• In the rather odd syntax of HOPE this is:

dec square: num -> num;
--- square(x) <= x * x;

• Since we aren’t really interested in HOPE, we won’t explain the
syntax in any great detail.

• Note though that first line includes a type definition.

Functional programming Lecture 1 8& %



' $

• HOPE is strongly typed.

• Other functional languages aren’t typed (LISP for example).

• We call the function by:

square(3)

• Which evaluates to 3 * 3 by definition, and then to 9 by the
definition of *.

• Note only that, it will always evaluate to 9.

Functional programming Lecture 1 9& %



' $

• More complex functions:

dec max : num # num -> num;
--- max(m, n) <= if m > n then m else n;

• and:

dec max3 : num # num # num -> num
---max3(a, b, c) <= max(a, max(b, c));

• The type definitions indicate that the functions take two and
three arguments respectively.

Functional programming Lecture 1 10& %



' $

Tuples

• Saying that these functions take two and three arguments is
slightly misleading.

• Instead they both have one argument— they are both tuples.

• One is a two-tuple and one is a three-tuple.

• This has one neat advantage—you can get functions to return a
tuple, and thus several values.

dec IntDiv : num # num -> num # num;
--- IntDiv(m, n) <= (m div n, m mod n);

• And we can the compose max(IntDiv(11, 4)), which will
give 3.

Functional programming Lecture 1 11& %



' $

• Another function:

dec analyse : real -> char # trueval # num;
---analyse(r) <= (if r < 0 then ’-’ else ’+’,

(r > = -1.0) and (r=< 1.0),
round(r));

• Applying

analyse(-1.04)

• will give (’-’, false, -1)

• Note the overloading of >.

Functional programming Lecture 1 12& %



' $

Recursion

• Without variables, we can’t write functional programs with
loops.

• So to get iteration, we need recursion.

dec sum : num -> num;
---sum(n) <= if n = 0 then 0

else sum(n - 1) + n;

• Which works in the same way as recursion normally does.

• Recursion fits in perfectly with the functional approach.

• Each application of the recursive function is referentially
transparent and easy to establish the value of.

Functional programming Lecture 1 13& %



' $

• Here is a classic recursive function, with a twist.

• We can define functions to be infix.

• Here is the power function as an infix function:

infix ˆ : 7;

dec ˆ : num # num -> num;
--- x ˆ y <= if y = 0 then 1

else x * x ˆ (y - 1);

• Again, HOPE gives us a very elegant way of defining the
function.

Functional programming Lecture 1 14& %



' $

Qualified expressions

• Because we don’t have variables, sometime it seems we have to
do unecessary work when evaluating functions:

dec f: num -> num;
---f(x) <= g(square(max(x, 4))) +

(if x <= 1 then 1
else g(square(max(x, 4))));

• Here we have to evaluate g(square(max(x, 4))) twice in
some situations.

• With variables, of course, we would have to do this just once.

Functional programming Lecture 1 15& %



' $

• Once way around this would be to define the repeated bit as a
new function:

dec f: num -> num;
---f(x) <= f1(g(square(max(x, 4))))

dec f1: num -> num;
---f1(a, b) <= a + (if b =< 1 then 1 else a)

• Efficiency here relies on efficient evaluation in the language.

• Another way is to use qualified expressions.

Functional programming Lecture 1 16& %



' $

• Consider:

dec f : num -> num
--- f(x) <= let a == g(square(max(x, 4)))

in a + (if x =< 1 then 1 else a))

• The ľet construct allows us to extend the set of parameters of a
function.

• In general:

let <name> == <expression1> in <expression2>

• The first expression defines <name> and the second uses it.

Functional programming Lecture 1 17& %



' $

• We also have:

<expression2> where <name> == <expression1>

• So we could also write:

dec f : num -> num
--- f(x) <= a + (if x =< 1 then 1 else a))

where a == g(square(max(x, 4)))

• Note that == associates a name with an expression, it does not do
assignment.

Functional programming Lecture 1 18& %



' $

• To see this:

let x == E1 in
if (let x == E2 in E3)

then x
else 1 + x

• The first let associates E1 with x.

• The second let doesn’t change this.

• Instead it renames E2 as x within E3.

• Outside E3 x has its original meaning.

• So far we have used qualified expressions to save on evaluation.

Functional programming Lecture 1 19& %



' $

• We also use them to clarify functions.

• A third use is to decompose tuples.

dec quot : num # num -> num;
--- quot(q, r) <= q;

dec rem : num # num -> num;
--- rem(q, r) < = r;

let pair == IntDiv(x, y) in quot(pair) *
y + rem(pair)

let(q, r) == IntDiv(x, y) in q * y + r

• This latter expression pattern matches (q, r) with the result of
calling IntDiv.

Functional programming Lecture 1 20& %



' $

User defined data

• As in most languages, we can’t do much interesting stuff in
HOPE without defining data.

• This is way simpler in HOPE than in other languages.

• Consider handling lists.

• In C, we have to use structs, and pointers and worry about
memory.

• Even in Java we have to use the right constructors.

• In HOPE we just deal with the recursive definition of a list.

Functional programming Lecture 1 21& %



' $

• A list is either empty or an element followed by a list.

data NumList == nil ++ cons(num # NumList)

• Here nil and cons are constructors.

• A single element list is then:

cons(3, nil)

• And the list comprising 1, 2 and 3 is:

cons(1, cons(2, cons(3, nil)))

Functional programming Lecture 1 22& %



' $

• To define another kind of list we just do something similar:

data CharList == NilCharList
++ ConsChars(char # CharList)

• Note that there is nothing special about the names nil or cons.

• Note also that we don’t have to say anything about how these
lists are represented internally.

• All we tell HOPE is that the list is either a something or a
character followed by a list.

Functional programming Lecture 1 23& %



' $

• The similarity of the definitions is intentional.

• All list definitions look like this.

• In fact, we can make a general definition:

typevar any

data list(any) == AnyNil
++ AnyCons(any # list(any))

• This is a polymorphic definition.

• We parameterize the list by the kinds of objects contained in it.

Functional programming Lecture 1 24& %



' $

• With this definition we can build lists of any type:

AnyCons(1, AnyCons(2, nil))

AnyCons(’a’, AnyCons(’b’, nil))

AnyCons(AnyNil, AnyCons(AnyCons(1, nil)))

AnyNil

• The last two are a list of lists, and a list of unspecificed type.

Functional programming Lecture 1 25& %



' $

• Lists are so common that they are built into HOPE.

infix :: : 7
data list(alpha) == nil ++ alpha :: list(alpha)

• We can also write lists as, for example [1, 2, 3].

• Strings are lists of characters.

• With this information it is easy to write functions to handle lists.

Functional programming Lecture 1 26& %



' $

dec join : list(alpha) # list(alpha)
-> list(alpha);

--- join(nil, L) <= L;
--- join(x::y, L) <= x :: join(y, L)

dec rev: list(alpha) -> list(alpha);
--- rev(nil) <= nil;
--- rev(x::l) <= rev(l) join [x];

• Note that join is predefined in HOPE as the infix function <>.

Functional programming Lecture 1 27& %



' $

Higher order functions

• Consider

dec IncList : list(num) -> list(num);
--- IncList(nil) <= nil;
--- IncList(x::l) <=

(x + 1)::IncList(l);

dec MakeStrings : list(char)
-> list(list(char));

--- MakeStrings(nil) <= nil;
--- MakeStrings(c::l) <=

[c]::MakeStrings(l);

• While doing different things, these two functions have the same
basic form.

Functional programming Lecture 1 28& %



' $

• Both operate on a list and apply a function to every member of
the list.

• The two functions are:

dec Inc : num -> num
--- Inc(n) <= n + 1

dec Listify : char -> list(char)
--- Listify(c) <= [c]

• We can capture this by defining a higher order function

Functional programming Lecture 1 29& %



' $

• This takes a function and a list as arguments and applies the
function to every member of the list.

dec map : (alpha -> beta) # list(alpha)
-> list(beta);

--- map(f, nil) <= nil;
--- map(f, x :: l) <= f(x) :: map(f, l);

• We can then write down the equivalent of our two earlier
functions.

map(Inc, L)

map(Listify, L)

Functional programming Lecture 1 30& %



' $

• Of course, this relies on us having defined Listify and Inc.

• However, we don’t even have to do this.

• HOPE provides us with the means to write anonymous function
bodies when and where we need them.

• For example:

lambda x => x + 1

• Here we have to use the word lambda.

Functional programming Lecture 1 31& %



' $

• In general, we can replace any function with a lambda
expression.

• We replace:

--- f(x) <= E

• with

lambda x => E

• Thus the function IncList is the same as:

map(lambda x => x + 1, L)

Functional programming Lecture 1 32& %



' $

• Note that we have problems defining a recursive lambda
because there is no name to use in the recursion.

• Instead we have to use a let or where.

• For example:

let f == lambda x => if x = 0 then 0
else x + f(x - 1)

• (which computes the sum of the first 3 numbers.)

• Such constructs are called recursive let and recursive where¿

Functional programming Lecture 1 33& %



' $

• Some functional languages make these separate constructs (eg
letrec).

• In HOPE lambda expressions can also contain a number of
parts.

--- IsEmpty(nil) <= true;
--- IsEmpty(_::_) <= false;

• becomes

lambda nil => true | _::_ => false

Functional programming Lecture 1 34& %


