
1

Copyright © 2001 Stephen A. Edwards All rights reserved

SDL

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards All rights reserved

The Most Generic Name Yet

� SDL = Specification and Description Language

� Grew out of the European telecommunications world

� Good for describing protocols implemented on
distributed systems

� Both textual and formal graphical syntax

Copyright © 2001 Stephen A. Edwards All rights reserved

Three Components in SDL Systems

� System
• Collection o f concurrently-runn ing blocks
• Blocks comm unicate through ex plic it channels
• Represents distributed, communicating computers

� Block
• Collection o f concurrently-runn ing processes or

collection of blocks
• Blocks comm unicate through ex plic it channels
• Represents a singl e processor

� Process
• Extended finite-state machine

Copyright © 2001 Stephen A. Edwards All rights reserved

Vending Machine System

������ �
�

	

��
�� ��
	����

sys tem VendingMachine
Blocks have
a name

May be
instances of
a type of
block

Copyright © 2001 Stephen A. Edwards All rights reserved

Vending Machine System

Coin5,
Coin10,
Coin25

Pay

sys tem VendingMachineChannels
list the
signals they
may con vey

������ �
�

	

��
�� ��
	����Channels

may have a
name

Copyright © 2001 Stephen A. Edwards All rights reserved

Vending Machine System

Coin5,
Coin10,
Coin25

Pay Exists,
Paid,

CoinErr

Status,
Complete������ �

�

	

��
�� ��
	����

sys tem VendingMachine

Channels
may be
bidirectional

2

Copyright © 2001 Stephen A. Edwards All rights reserved

Vending Machine System

Disp,
Overpay,

Empty
Button,
Undo

Coin5,
Coin10,
Coin25

Coin5,
Coin10,
Coin25

Pay

Change

Coke,
Pepsi,
Sprite

Exists,
Paid,

CoinErr

Status,
Complete���

��� ��

���
��

� �
����
���

sys tem VendingMachine

Copyright © 2001 Stephen A. Edwards All rights reserved

Communication in SDL

Copyright © 2001 Stephen A. Edwards All rights reserved

SDL Communication

� Processes, blocks, and sys tems communicate
through signals conveyed throug h channels

� Signal is a message corresponding to an event, e.g.,
• Ring
• HangUp
• Dial

Copyright © 2001 Stephen A. Edwards All rights reserved

SDL Signals

� Pure signals have no value
• Ring
• Hangup

� Valued signals also convey data
• dial(digit)

� SDL’s type system for values fairly complex

Copyright © 2001 Stephen A. Edwards All rights reserved

Signals Have Addresses

� Signals may include the address of the process that
sent them

� This is useful for distinguishing among multiple
instances of a single process

� Each process may correspond to, say, a different call
in progress

• Which call j ust hung up?

Copyright © 2001 Stephen A. Edwards All rights reserved

SDL Communication

� Communication within a block (computer) is
assumed instantaneous

• Assumed quick becau se it’s all on the same pro cess or

� Communication between blocks has un cont rolla ble
delays

• Assumed slow because it is don e across long
distances

3

Copyright © 2001 Stephen A. Edwards All rights reserved

SDL Channels

� Signals travel between blocks and processes
through channels

� Channel: point-to-point connection that defines
which signals may travel along it

� A signal may traverse many chann els before
reaching its destination

Copyright © 2001 Stephen A. Edwards All rights reserved

SDL Processes

Copyright © 2001 Stephen A. Edwards All rights reserved

SDL Processes

� Each process is a fin ite-stat e machine

� Each process has a single inpu t sign al queue

� Execution: remove next signal from queue and react
• Make decisions
• Emit more signals
• Compute the next state

� Processes may be created and terminate while
system is running

Copyright © 2001 Stephen A. Edwards All rights reserved

SDL Processes

Textual form Graphical form

state Idle;

 input Coin(C);

 task x := value(C);

 nextstate Paid;

 input Choice;

 nextstate Idle;

endstate Idle;

Idle

Coin

Paid

Choice

Idlex := value(C)

Copyright © 2001 Stephen A. Edwards All rights reserved

SDL Process States

� At a particular state,

� A signal is removed from the queue
� If a transition defined for the signal in curr ent state,

• Run the transition
• Transmit signals
• Update internal variables
• Choo se a next state

� If no transition defined for the signal in current state,
• Discard the signal
• Leave the state unchange d

Copyright © 2001 Stephen A. Edwards All rights reserved

The State Symbol

� Can denote bot h a current and a next state
� Line leaving leads to rules for a current state

� Arrow entering means a next stat e

Idle

Running

4

Copyright © 2001 Stephen A. Edwards All rights reserved

The Start Symbol

� Denotes where the execution of a process begins
� Nameless state

Running

Copyright © 2001 Stephen A. Edwards All rights reserved

The Receive Symbol

� Appears immediately after a state
� Ind icates which signal triggers each transition

Idle

Coin Choice Clear

Lead to diagrams for each transit ion

Copyright © 2001 Stephen A. Edwards All rights reserved

Received Signals

� Complete Valid Input Signal Set
• Set of all signals that the process will ever accept
• An error occurs if a signal outside this set is received

� In any state, only certain signals may have a
transition

• A valid signal that has no transition is simply discarded
wi thou t changing the stat e

• The “ implicit transit ion”

Copyright © 2001 Stephen A. Edwards All rights reserved

The Save Symbol

� Like receive, but instead pushes the signal back in
the queue

� Designed for handling signals that arr ive out of order

Idle

Coin Clear Choice

A “ Choice”
signal that
arrives in
this stat e
will be
deferred to
the next

Copyright © 2001 Stephen A. Edwards All rights reserved

The Save Symbol

� Single process input queue totally orders the
sequence of events that arr ive at a process

� What if two events arr ive from different processes at
more-or-less the same time?

� The save symbol can be used to dictate the order in
which signals that arr ive out of order are processed

Copyright © 2001 Stephen A. Edwards All rights reserved

The Output Symbol

� Send a signal to another pr ocess

� Which channel to send it on usually follows from its
type

GotMoney

Idle

Coin

5

Copyright © 2001 Stephen A. Edwards All rights reserved

Local Variables

! An SDL process has local variables it can manipulate

! Partially shared variables
• Only the owning process m ay wr ite a variable
• Other processes may be allo wed to read a var iab le

! Variables are declared in a text annotation

dcl x Integer;

Copyright © 2001 Stephen A. Edwards All rights reserved

SDL Sorts

! Each variable is of a particular “ sort” (type)
• Possible values (e.g., integer num bers)
• Operators on those values (e.g., +, *)
• Literals (e.g., “z ero” , “ 1” , “ 2”)

! Built-in sorts: integer, Boolean, real, character, and
string

! Can be combined in structures, arrays, enumerations,
and sets

Copyright © 2001 Stephen A. Edwards All rights reserved

Task Symbol

! Ass ignment of variable to value of expression

! Informal text
• Produces an incomplete specif ication
• Intended to be later refined

x := value(C) + 3.14159

‘Release a can’

dcl x Real;

Copyright © 2001 Stephen A. Edwards All rights reserved

The Decision Symbol

! A two-way branch that can check a condition
! Can be an expression or informal

x < 5
(true)(false)

‘Is anybody awake?’
(‘yes’)(‘no’)

Copyright © 2001 Stephen A. Edwards All rights reserved

Process Creation Symbol

! A transition can cause another process to start

! Communication channels stay fixed
! Processes marked with initial and maximum number

of copies that can be running

CallHandler

CallHandler(0,63)

Copyright © 2001 Stephen A. Edwards All rights reserved

Process Creation

! Intended use is in a “ server” style
! A new conn ection (call, interaction, etc.) appears
! A new server is created to handle this particular

interaction
! It terminates when it has completed the task (e.g., the

user hangs up the phon e

! Maximum number of processes usually for resource
constraints

• Can’t handle more than 64 simultaneous calls wi thou t
exhausting process or resou rces

6

Copyright © 2001 Stephen A. Edwards All rights reserved

Process Creation

" Process is always running

" Process starts dormant. At most one instance of the
process ever runs

" As many as 64 copies of the process can be runn ing

CallHandler(1,1)

CallHandler(0,1)

CallHandler(0,64)

Copyright © 2001 Stephen A. Edwards All rights reserved

Process Termination

" A process can on ly terminate itself

‘Utter final words’

Copyright © 2001 Stephen A. Edwards All rights reserved

Timers

Idle

T

Idle

Choice

set (now+10, T)

Timer T;

‘Where’s my money?’

Timer must
be declared
like a
variable

Timer is set
to go off at a
particular
time

When timer
expires, it
sends a
signal to the
process

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementing an SDL system

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementation

" Event-driven programming

" Each process is an infin ite loop

for (;;) {

 event = get_next_event();

 dispatch_handler(event, current_stat e);

}

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementation

" Typical implementation:

" Code for each signal/current state pair becomes a
separate function

" Pointers to all of these functions placed in a big table
and called by main dispatcher

" No handler for a signal in a particular state: signal
discarded and machine remains in the same state

7

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementing Input Queues

Each process has a single inpu t queue from which it
consumes signals

Process

Signals
waiting to be
consumed

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementing the Save Operator

Signals at the beginning of the queue in the curr ent
state’s save set are ignored

Process

A

A

B

C

Signals in
the stat e’s
save set

A

C

Idle

C A B

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementing the Save Operator

Search though signals in the queue starting at the
head

Consume the first one not in the save set

Implications:
Input queue is not a FIFO
Need the abil ity to delete signals in the midd le of the

queue
Suggests a linked-list implementation
Fussy to make it work with a circular buffer

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementing Timers

In effect, a timer creates a process that feeds a
“ timeout” signal to the process

Process

Timer

Process

Set,
Reset

Timeout

Remove

Consumed

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementing Timers

Process starts a timer by signaling “ set” to the timer
• Timer signals queue to delete any unconsum ed

Timeout signals

Process stops a timer by signaling “ reset” to the
timer

• Timer signals queue to delete any pending Timeout
signals

When timer expires, it send a “ Timeout” signal to the
queue

• Timeout behaves like a normal s ignal
• When Timeout signal cons umed, queu e sign als timer,

which then shuts off .

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementing Communication

Channels have FIFO behavior
• A signal can’t overtake anot her if they’ re traveling

along the same channel

Channels have nondeterministic delay
• Signals sent along two parallel chann els may arr ive in

any order

8

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementing Viewed Variables

$ If process A reveals its variable v, then process B
may view the value of process A’s variable v

$ Conceptually, this is handled by a view process th at
maintains all vi ewed variables

$ Revealers send updates to the view process
$ Viewers send requests to view process

Process A Process A
view

Update Request

Response

Copyright © 2001 Stephen A. Edwards All rights reserved

Nond eterminism

$ Fundamentally nond eterministic because of implicit
signal merge

$ When two processes send signals to a third process
at a sing le time, they arr ive in some und efined order

$ State machines usually sensitive to signal arr ival
order

$ Save construct provides a way to handl e some cases

Copyright © 2001 Stephen A. Edwards All rights reserved

Explicit Nondeterminis m

$ Spontaneous transition
• Process may nond eterministically proceed dow n the

“ non e” branch, even if a signal is wa it ing

$ Nodeterminstic value:

$ Nond eterminstic choice:

Idle

A none

any

x := any Integer

Copyright © 2001 Stephen A. Edwards All rights reserved

How SDL is used

$ Originally intended as a syst em specif ication
$ Meant to be interpreted by people, not automatically
$ Sufficiently formal to enable mathematical reasoning

about its behavior
$ Intended to be more precise that English text or ad-

hoc graphical specifications (flowcharts, etc.)
$ Still its main use

Copyright © 2001 Stephen A. Edwards All rights reserved

How SDL is used

$ Telelogic’s Tau system
• Graphical SDL sys tem entry
• Simulation of SDL systems
• Automatic code gen eration

$ Automatic code generation facilit ies not usually used
for production

• Code quality insuff icient?

$ Used mostly for system simulation
• Much like Matlab is used for specifying and simulating

signal process ing algorithms

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary

$ SDL designed for specifying telecommunications
protocols

$ Not designed as a programming or modeling
language per se

$ Intended more as an improvement over English of
specifying desired behavior

$ System designers would devise specification, then
hand it to implementers, who would perform their
task manually

9

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary

% Describes distributed sys tems composed of
computers running concurrent processes

% Communication channels have FIFO behavior
% Each channel marked with the signals (messages)

that may travel along it

% Processes are extended fin ite-sta te machines
% Each has a s ing le input signal queue

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary

% Graphical and textual syntax
• Graphical syntax based on b lock di agrams and

flowcharts
• Textual syntax looks a litt le li ke Pascal

% Fundamentally nond eterministic
• Nond eterminstic delays through communication

channels
• Implicit merge at the inpu t to each process
• Save con struct give som e abili ty to handl e out-of-order

arrivals due to nond eterminism
• Some explic it ly nond eterministic constructs

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary

% Is this used?
% In telecom, fairly widely
% Outside, not as much

% A specification language
• Not designed to be implemented automatica lly
• At least one automatic sys tem exists, most ly used for

simulation

% Not a modeling langauge
• Can’t say anything abou t what actual delays are

Copyright © 2001 Stephen A. Edwards All rights reserved

Most Important Points

% Computational model:
• Concurrent process es
• Processes are fin ite-state machines d escribed us ing

flowcharts that may manipulate variables
• Each process h as a singl e input queue that collects

signals from every process

% Explicit listing of what signals may travel through
what channels

