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The Most Generic Name Yet

� SDL = Specification and Description Language

� Grew out of the European telecommunications world

� Good for describing protocols implemented on
distributed systems

� Both textual and formal graphical syntax
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Three Components in SDL Systems

� System
• Collection o f concurrently-runn ing blocks
• Blocks comm unicate through ex plic it channels
• Represents distributed, communicating computers

� Block
• Collection o f concurrently-runn ing processes or

collection of blocks
• Blocks comm unicate through ex plic it channels
• Represents a singl e processor

� Process
• Extended finite-state machine
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Vending Machine System
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Vending Machine System

Coin5,
Coin10,
Coin25

Pay

sys tem VendingMachineChannels
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Vending Machine System
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Vending Machine System
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Communication in SDL
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SDL Communication

� Processes, blocks, and sys tems communicate
through signals conveyed throug h channels

� Signal is a message corresponding to an event, e.g.,
• Ring
• HangUp
• Dial
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SDL Signals

� Pure signals have no value
• Ring
• Hangup

� Valued signals also convey data
• dial(digit)

� SDL’s type system for values fairly complex
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Signals Have Addresses

� Signals may include the address of the process that
sent them

� This is useful for distinguishing among multiple
instances of a single process

� Each process may correspond to, say, a different call
in progress

• Which call j ust hung up?
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SDL Communication

� Communication within a block (computer) is
assumed instantaneous

• Assumed quick becau se it’s all on the same pro cess or

� Communication between blocks has un cont rolla ble
delays

• Assumed slow because it is don e across long
distances
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SDL Channels

� Signals travel between blocks and processes
through channels

� Channel: point-to-point connection that defines
which signals may travel along it

� A signal may traverse many chann els before
reaching its destination
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SDL Processes

Copyright © 2001 Stephen A. Edwards  All rights reserved

SDL Processes

� Each process is a fin ite-stat e machine

� Each process has a single inpu t sign al queue

� Execution: remove next signal from queue and react
• Make decisions
• Emit more signals
• Compute the next state

� Processes may be created and terminate while
system is running
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SDL Processes

Textual form Graphical form

state Idle;

  input Coin(C);

    task x  := value(C);

    nextstate Paid;

  input Choice;

     nextstate Idle;

endstate Idle;

Idle

Coin

Paid

Choice

Idlex := value(C)
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SDL Process States

� At a particular state,

� A signal is removed from the queue
� If a transition defined for the signal in curr ent state,

• Run the transition
• Transmit signals
• Update internal variables
• Choo se a next state

� If no transition defined for the signal in current state,
• Discard the signal
• Leave the state unchange d
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The State Symbol

� Can denote bot h a current and a next state
� Line leaving leads to rules for a current state

� Arrow entering means a next stat e

Idle

Running
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The Start Symbol

� Denotes where the execution of a process begins
� Nameless state

Running
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The Receive Symbol

� Appears immediately after a state
� Ind icates which signal triggers each transition

Idle

Coin Choice Clear

Lead to diagrams for each transit ion
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Received Signals

� Complete Valid Input Signal Set
• Set of all signals that the process will ever accept
• An error occurs if a signal outside this set is received

� In any state, only certain signals may have a
transition

• A valid signal that has no transition is simply discarded
wi thou t changing the stat e

• The “ implicit transit ion”
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The Save Symbol

� Like receive, but instead pushes the signal back in
the queue

� Designed for handling signals that arr ive out of order

Idle

Coin Clear Choice

A “ Choice”
signal that
arrives in
this stat e
will be
deferred to
the next
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The Save Symbol

� Single process input queue totally orders the
sequence of events that arr ive at a process

� What if two events arr ive from different processes at
more-or-less the same time?

� The save symbol can be used to dictate the order in
which signals that arr ive out of order are processed
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The Output Symbol

� Send a signal to another pr ocess

� Which channel to send it on usually follows from its
type

GotMoney

Idle

Coin
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Local Variables

! An SDL process has local variables it can manipulate

! Partially shared variables
• Only the owning process m ay wr ite a variable
• Other processes may be allo wed to read a var iab le

! Variables are declared in a text annotation

dcl x Integer;
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SDL Sorts

! Each variable is of a particular “ sort” (type)
• Possible values (e.g., integer num bers)
• Operators on those values (e.g., +, *)
• Literals (e.g., “z ero” , “ 1” , “ 2” )

! Built-in sorts: integer, Boolean, real, character, and
string

! Can be combined in structures, arrays, enumerations,
and sets
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Task Symbol

! Ass ignment of variable to value of expression

! Informal text
• Produces an incomplete specif ication
• Intended to be later refined

x := value(C) + 3.14159

‘Release a can’

dcl x Real;
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The Decision Symbol

! A two-way branch that can check a condition
! Can be an expression or informal

x < 5
(true)(false)

‘Is anybody awake?’
(‘yes’)(‘no’)
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Process Creation Symbol

! A transition can cause another process to start

! Communication channels stay fixed
! Processes marked with initial and maximum number

of copies that can be running

CallHandler

CallHandler(0,63)
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Process Creation

! Intended use is in a “ server” style
! A new conn ection (call, interaction, etc.) appears
! A new server is created to handle this particular

interaction
! It terminates when it has completed the task (e.g., the

user hangs up the phon e

! Maximum number of processes usually for resource
constraints

• Can’t handle more than 64 simultaneous calls wi thou t
exhausting process or resou rces
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Process Creation

" Process is always running

" Process starts dormant. At most one instance of the
process ever runs

" As many as 64 copies of the process can be runn ing

CallHandler(1,1)

CallHandler(0,1)

CallHandler(0,64)
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Process Termination

" A process can on ly terminate itself

‘Utter final words’
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Timers

Idle

T

Idle

Choice

set (now+10, T)

Timer T;

‘Where’s my money?’

Timer must
be declared
like a
variable

Timer is set
to go off at a
particular
time

When timer
expires, it
sends a
signal to the
process
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Implementing an SDL system
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Implementation

" Event-driven programming

" Each process is an infin ite loop

for (;;) {

   event = get_next_event();

   dispatch_handler(event, current_stat e);

}
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Implementation

" Typical implementation:

" Code for each signal/current state pair becomes a
separate function

" Pointers to all of these functions placed in a big table
and called by main dispatcher

" No handler for a signal in a particular state: signal
discarded and machine remains in the same state
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Implementing Input Queues

# Each process has a single inpu t queue from which it
consumes signals

Process

Signals
waiting to be
consumed
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Implementing the Save Operator

# Signals at the beginning of the queue in the curr ent
state’s save set are ignored

Process

A

A

B

C

Signals in
the stat e’s
save set

A

C

Idle

C A B
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Implementing the Save Operator

# Search though signals in the queue starting at the
head

# Consume the first one not in the save set

# Implications:
# Input queue is not a FIFO
# Need the abil ity to delete signals in the midd le of the

queue
# Suggests a linked-list implementation
# Fussy to make it work with a circular buffer
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Implementing Timers

# In effect, a timer creates a process that feeds a
“ timeout” signal to the process

Process

Timer

Process

Set,
Reset

Timeout

Remove

Consumed
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Implementing Timers

# Process starts a timer by signaling “ set” to the timer
• Timer signals queue to delete any unconsum ed

Timeout signals

# Process stops a timer by signaling “ reset” to the
timer

• Timer signals queue to delete any pending Timeout
signals

# When timer expires, it send a “ Timeout” signal to the
queue

• Timeout behaves like a normal s ignal
• When Timeout signal cons umed, queu e sign als timer,

which then shuts off .
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Implementing Communication

# Channels have FIFO behavior
• A signal can’t overtake anot her if they’ re traveling

along the same channel

# Channels have nondeterministic delay
• Signals sent along two parallel chann els may arr ive in

any order
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Implementing Viewed Variables

$ If process A reveals its variable v, then process B
may view the value of process A’s variable v

$ Conceptually, this is handled by a view process th at
maintains all vi ewed variables

$ Revealers send updates to the view process
$ Viewers send requests to view process

Process A Process A
view

Update Request

Response
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Nond eterminism

$ Fundamentally nond eterministic because of implicit
signal merge

$ When two processes send signals to a third process
at a sing le time, they arr ive in some und efined order

$ State machines usually sensitive to signal arr ival
order

$ Save construct provides a way to handl e some cases
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Explicit Nondeterminis m

$ Spontaneous transition
• Process may nond eterministically proceed dow n the

“ non e” branch, even if a signal is wa it ing

$ Nodeterminstic value:

$ Nond eterminstic choice:

Idle

A none

any

x := any Integer
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How SDL is used

$ Originally intended as a syst em specif ication
$ Meant to be interpreted by people, not automatically
$ Sufficiently formal to enable mathematical reasoning

about its behavior
$ Intended to be more precise that English text or ad-

hoc graphical specifications (flowcharts, etc.)
$ Still its main use
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How SDL is used

$ Telelogic’s Tau system
• Graphical SDL sys tem entry
• Simulation of SDL systems
• Automatic code gen eration

$ Automatic code generation facilit ies not usually used
for production

• Code quality insuff icient?

$ Used mostly for system simulation
• Much like Matlab is used for specifying and simulating

signal process ing algorithms
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Summary

$ SDL designed for specifying telecommunications
protocols

$ Not designed as a programming or modeling
language per se

$ Intended more as an improvement over English of
specifying desired behavior

$ System designers would devise specification, then
hand it to implementers, who would perform their
task manually
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Summary

% Describes distributed sys tems composed of
computers running concurrent processes

% Communication channels have FIFO behavior
% Each channel marked with the signals (messages)

that may travel along it

% Processes are extended fin ite-sta te machines
% Each has a s ing le input signal queue
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Summary

% Graphical and textual syntax
• Graphical syntax based on b lock di agrams and

flowcharts
• Textual syntax looks a litt le li ke Pascal

% Fundamentally nond eterministic
• Nond eterminstic delays through communication

channels
• Implicit merge at the inpu t to each process
• Save con struct give som e abili ty to handl e out-of-order

arrivals due to nond eterminism
• Some explic it ly nond eterministic constructs
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Summary

% Is this used?
% In telecom, fairly widely
% Outside, not as much

% A specification language
• Not designed to be implemented automatica lly
• At least one automatic sys tem exists, most ly used for

simulation

% Not a modeling langauge
• Can’t say anything abou t what actual delays are
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Most Important Points

% Computational model:
• Concurrent process es
• Processes are fin ite-state machines d escribed us ing

flowcharts that may manipulate variables
• Each process h as a singl e input queue that collects

signals from every process

% Explicit listing of what signals may travel through
what channels


