
1

Copyright © 2001 Stephen A. Edwards All rights reserved

Review for Final

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards All rights reserved

Concurrency in Java

Copyright © 2001 Stephen A. Edwards All rights reserved

The Sleep Method

�����������
	�����������������
� �������������
� ��� �
!"��#�#����%$"&�&�&��'� // Pause for 1 second(�*) � ��+,�%-�� � #����%��� � #��.%/��*#�� � �"���0#����
�1# � �����2� // caused by thread.interrupt()(

3 ��! � #�4657��� � 5�������� � �8�8��9�:�����;�<��=�
(
(

Copyright © 2001 Stephen A. Edwards All rights reserved

Per-Object Locks
> Each Java object has a lock that may

be owned by at least one thread

> A thread waits if it attempts to obtain
an already-obtained lock

> The lock is a counter: one thread
may lock an object more than once

Copyright © 2001 Stephen A. Edwards All rights reserved

The Synchronized Statement
> A synchronized statement gets an object’s lock

before running its body

Counter mycount = new Counter;

synchronized(mycount) {

mycount.count();

}

> Releases the lock when the body terminates
> Choice of object to lock is by convention

“get the lock for
mycount before calling
count()”

Copyright © 2001 Stephen A. Edwards All rights reserved

Synchronized Methods

class AtomicCounter {

private int _count;

public synchronized void count() {

_count++;

}

}

“get the lock for the
AtomicCounter object before
running this method”

This implementation
guarantees at most one
thread can increment the
counter at any time

2

Copyright © 2001 Stephen A. Edwards All rights reserved

wait() and notify()
> Each object has a set of threads that are waiting for

its lock (its wait set)

synchronized (obj) { // Acquire lock on obj

obj.wait(); // suspend

// add thread to obj’s wait set

// relinquish locks on obj

In other thread:

obj.notify(); // enable some waiting thread

Copyright © 2001 Stephen A. Edwards All rights reserved

wait() and notify()
> Confusing enough?

> notify() nodeterministically chooses one thread to
reawaken (may be many waiting on same object)

• What happens when there’s more than one?

> notifyAll() enables all waiting threads
• Much safer?

Copyright © 2001 Stephen A. Edwards All rights reserved

Real-Time Operating Systems

Copyright © 2001 Stephen A. Edwards All rights reserved

Priority-based Scheduling
> Typical RTOS based on fixed-priority

preemptive scheduler

> Assign each process a priority
> At any time, scheduler runs highest priority

process ready to run

> Process runs to completion unless preempted

Copyright © 2001 Stephen A. Edwards All rights reserved

Typical RTOS Task Model
> Each task a triplet: (execution time, period, deadline)
> Usually, deadline = period
> Can be initiated any time during the period

Execution
time

Period

Deadline

Time

Initiation

Copyright © 2001 Stephen A. Edwards All rights reserved

Key RMS Result
> Rate-monotonic scheduling is optimal:

> Task sets do not always have a schedule
> Simple example: P1 = (10, 20, 20) P2 = (5, 9, 9)

• Requires more than 100% processor utilization

If there is fixed-priority schedule that
meets all deadlines, then RMS will

produce a feasible schedule

3

Copyright © 2001 Stephen A. Edwards All rights reserved

RMS Missing a Deadline
> p1 = (10,20,20) p2 = (15,30,30) utilization is 100%

1

2

P2 misses first deadline

Would have met the
deadline if p2 = (10,30,30),
utilization reduced 83%

Copyright © 2001 Stephen A. Edwards All rights reserved

EDF Meeting a Deadline
> p1 = (10,20,20) p2 = (15,30,30) utilization is 100%

1

2

P2 takes priority because its
deadline is sooner

Copyright © 2001 Stephen A. Edwards All rights reserved

Priority Inversion
> RMS and EDF assume no process interaction
> Often a gross oversimplification

> Consider the following scenario:

1

2

Process 2 begins running
Process 2 acquires lock on resource

Process 1 preempts Process 2
Process 1 tries to acquire lock for resource

Copyright © 2001 Stephen A. Edwards All rights reserved

Nastier Example
> Higher priority process blocked indefinitely

1

Process 3 begins running
Process 3 acquires lock on resource

Process 2 preempts Process 3

Process 1 tries to acquire lock and is blocked

3

2

Process 1 preempts Process 2

Process 2 delays process 3’s release of lock

Copyright © 2001 Stephen A. Edwards All rights reserved

Priority Inheritance
> Solution to priority inversion
> Temporarily increase process’s priority when it

acquires a lock

> Level to increase: highest priority of any process that
might want to acquire same lock

• I.e., high enough to prevent it from being preempted

> Danger: Low-priority process acquires lock, gets
high priority and hogs the processor

• So much for RMS

Copyright © 2001 Stephen A. Edwards All rights reserved

Dataflow Languages

4

Copyright © 2001 Stephen A. Edwards All rights reserved

Dataflow Language Model
> Processes communicating through FIFO buffers

Process 1 Process 2

Process 3

FIFO Buffer

FIFO Buffer
FIFO Buffer

Copyright © 2001 Stephen A. Edwards All rights reserved

A Kahn Process
> From Kahn’s original 1974 paper

process f(in int u, in int v, out int w)
{
int i; bool b = true;
for (;;) {
i = b ? wait(u) : wait(w);
printf("%i\n" , i);
send(i, w);
b = !b;

}
}

Process
interface
includes FIFOs

wait() returns the next
token in an input FIFO,
blocking if it’s empty

send() writes a data
value on an output FIFO

Copyright © 2001 Stephen A. Edwards All rights reserved

Tom Parks’ Algorithm
> Schedules a Kahn Process Network in bounded

memory if it is possible
> Start with bounded buffers
> Use any scheduling technique that avoids buffer

overflow
> If system deadlocks because of buffer overflow,

increase size of smallest buffer and continue

Copyright © 2001 Stephen A. Edwards All rights reserved

Multi-rate SDF System
> DAT-to-CD rate converter
> Converts a 44.1 kHz sampling rate to 48 kHz

1 1 2 3 2 7 8 7 5 1

Upsampler Downsampler

Copyright © 2001 Stephen A. Edwards All rights reserved

Calculating Rates
> Each arc imposes a constraint

b

d

1
2

3

2

c

a

3

41

3

2

1

6

3a – 2b = 0

4b – 3d = 0

b – 3c = 0

2c – a = 0

d – 2a = 0

Solution:

a = 2c

b = 3c

d = 4c

Copyright © 2001 Stephen A. Edwards All rights reserved

Scheduling Example
> Theorem guarantees any valid simulation will

produce a schedule

b

d

1
2

3

2

c

a

3

41

3

2

1

6

a=2 b=3 c=1 d=4

Possible schedules:

BBBCDDDDAA

BDBDBCADDA

BBDDBDDCAA

… many more

BC … is not valid

5

Copyright © 2001 Stephen A. Edwards All rights reserved

Finding Single-Appearance
Schedules
> Always exist for acyclic graphs

• Blocks appear in topological order
> For SCCs, look at number of

tokens that pass through arc in
each period (follows from balance
equations)
> If there is at least that much delay,

the arc does not impose ordering
constraints
> Idea: no possibility of underflow

b

3

2

a

6

a=2 b=3

6 tokens cross the arc

delay of 6 is enough

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary of Dataflow
> Processes communicating exclusively through FIFOs

> Kahn process networks
• Blocking read, nonblocking write
• Deterministic
• Hard to schedule
• Parks’ algorithm requires deadlock detection, dynamic

buffer-size adjustment

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary of Dataflow
> Synchronous Dataflow (SDF)
> Firing rules:

• Fixed token consumption/production
> Can be scheduled statically

• Solve balance equations to establish rates
• Any correct simulation will produce a schedule if one

exists
> Looped schedules

• For code generation: implies loops in generated code
• Recursive SCC Decomposition

> CSDF: breaks firing rules into smaller pieces
• Scheduling problem largely the same

Copyright © 2001 Stephen A. Edwards All rights reserved

Esterel

Copyright © 2001 Stephen A. Edwards All rights reserved

Basic Esterel Statements
> Thus

emit A;

present A then emit B end;

pause;

emit C

> Makes A & B present the first instant, C present the
second

A

B
C

Copyright © 2001 Stephen A. Edwards All rights reserved

Signal Coherence Rules
> Each signal is only present or absent in a cycle,

never both
> All writers run before any readers do

> Thus

present A else

emit A

end

is an erroneous program

6

Copyright © 2001 Stephen A. Edwards All rights reserved

The || Operator
> Groups of statements separated by || run

concurrently and terminate when all groups have
terminated

[

emit A; pause; emit B;

||

pause; emit C; pause; emit D

];

emit E

A B

C

D

E

Copyright © 2001 Stephen A. Edwards All rights reserved

Bidirectional Communication
> Processes can communicate back and forth in the

same cycle

[

pause; emit A; present B then emit C end;

pause; emit A

||

pause; present A then emit B end

]

A

B

C

A

Copyright © 2001 Stephen A. Edwards All rights reserved

Strong vs. Weak Abort

abort
pause;
pause;
emit A;
pause

when B;
emit C B

C

weak abort
pause;
pause;
emit A;
pause

when B;
emit C A

B
C

Strong abort: emit A
not allowed to run

Weak abort: emit A
allowed to run, body
terminated
afterwards

Copyright © 2001 Stephen A. Edwards All rights reserved

Causality
> Can be very complicated because of instantaneous

communication
> For example: this is also erroneous

abort
emit B

when A
||
[
present B then emit A end;
pause

]

Emission of B
indirectly causes
emission of A

Copyright © 2001 Stephen A. Edwards All rights reserved

What To Understand About Esterel
> Synchronous model of time

• Time divided into sequence of discrete instants
• Instructions either run and terminate in the same

instant or explicitly in later instants
> Idea of signals and broadcast

• “ Variables” that take exactly one value each instant
and don’t persist

• Coherence rule: all writers run before any readers
> Causality Issues

• Contradictory programs
• How Esterel decides whether a program is correct

Copyright © 2001 Stephen A. Edwards All rights reserved

What To Understand About Esterel
> Compilation techniques

• Automata
� Fast code
� Doesn’t scale

• Netlists
� Scales well
� Slow code
� Good for causality

• Control-flow
� Scales well
� Fast code
� Bad at causality

> Compilers, documentation, etc. available from
www.esterel.org

7

Copyright © 2001 Stephen A. Edwards All rights reserved

Verilog

Copyright © 2001 Stephen A. Edwards All rights reserved

Multiplexer Built From Primitives

module mux(f, a, b, sel);
output f;
input a, b, sel;

and g1(f1, a, nsel),
g2(f2, b, sel);

or g3(f, f1, f2);
not g4(nsel, sel);

endmodule a

b
sel

f

nsel f1

f2

g1

g2

g3
g4

Verilog programs
built from modules

Each module
has an interface

Module may
contain structure:
instances of
primitives and other
modules

Copyright © 2001 Stephen A. Edwards All rights reserved

Multiplexer Built From Primitives

module mux(f, a, b, sel);
output f;
input a, b, sel;

and g1(f1, a, nsel),
g2(f2, b, sel);

or g3(f, f1, f2);
not g4(nsel, sel);

endmodule a

b
sel

f

nsel f1

f2

g1

g2

g3
g4

Identifiers not
explicitly
defined default
to wires

Copyright © 2001 Stephen A. Edwards All rights reserved

Multiplexer Built With Always

module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

always @(a or b or sel)
if (sel) f = a;
else f = b;

endmodule a

b
sel

f

Modules may contain
one or more always
blocks

Sensitivity list
contains signals
whose change
triggers the
execution of the
block

Copyright © 2001 Stephen A. Edwards All rights reserved

Multiplexer Built With Always

module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

always @(a or b or sel)
if (sel) f = a;
else f = b;

endmodule a

b
sel

f

A reg behaves like
memory: holds its value
until imperatively
assigned otherwise

Body of an always
block contains
traditional imperative
code

Copyright © 2001 Stephen A. Edwards All rights reserved

Mux with Continuous Assignment

module mux(f, a, b, sel);
output f;
input a, b, sel;

assign f = sel ? a : b;

endmodule

a

b
sel

f

LHS is always set to the
value on the RHS

Any change on the right
causes reevaluation

8

Copyright © 2001 Stephen A. Edwards All rights reserved

Mux with User-Defined Primitive

primitive mux(f, a, b, sel);
output f;
input a, b, sel;

table
1?0 : 1;
0?0 : 0;
?11 : 1;
?01 : 0;
11? : 1;
00? : 0;

endtable
endprimitive

a

b
sel

f

Behavior defined using a
truth table that includes
“don’t cares”

This is a less pessimistic
than others: when a & b
match, sel is ignored

(others produce X)

Copyright © 2001 Stephen A. Edwards All rights reserved

Nonblocking Looks Like Latches
> RHS of nonblocking taken from latches
> RHS of blocking taken from wires

a = 1;

b = a;

c = b;

a <= 1;

b <= a;

c <= b;

1
a b c“ ”

a

b

c

1

“ ”

Copyright © 2001 Stephen A. Edwards All rights reserved

Register Inference
> Combinational:

reg y;
always @(a or b or sel)
if (sel) y = a;
else y = b;

> Sequential:

reg q;
always @(d or clk)
if (clk) q = d;

Sensitive to changes
on all of the variables
it reads

Y is always assigned

q only assigned when
clk is 1

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary of Verilog
> Systems described hierarchically

• Modules with interfaces
• Modules contain instances of primitives, other modules
• Modules contain initial and always blocks

> Based on discrete-event simulation semantics
• Concurrent processes with sensitivity lists
• Scheduler runs parts of these processes in response to

changes

Copyright © 2001 Stephen A. Edwards All rights reserved

Modeling Tools
> Switch-level primitives

• CMOS transistors as switches that move around
charge

> Gate-level primitives
• Boolean logic gates

> User-defined primitives
• Gates and sequential elements defined with truth

tables
> Continuous assignment

• Modeling combinational logic with expressions
> Initial and always blocks

• Procedural modeling of behavior

Copyright © 2001 Stephen A. Edwards All rights reserved

Language Features
> Nets (wires) for modeling interconnection

• Non state-holding
• Values set continuously

> Regs for behavioral modeling
• Behave exactly like memory for imperative modeling
• Do not always correspond to memory elements in

synthesized netlist

> Blocking vs. nonblocking assignment
• Blocking behaves like normal “ C-like” assignment
• Nonblocking updates later for modeling synchronous

behavior

9

Copyright © 2001 Stephen A. Edwards All rights reserved

Language Uses
> Event-driven simulation

• Event queue containing things to do at particular
simulated times

• Evaluate and update events
• Compiled-code event-driven simulation for speed

> Logic synthesis
• Translating Verilog (structural and behavioral) into

netlists
• Register inference: whether output is always updated
• Logic optimization for cleaning up the result

Copyright © 2001 Stephen A. Edwards All rights reserved

SystemC

Copyright © 2001 Stephen A. Edwards All rights reserved

Quick Overview
> A SystemC program consists of module definitions

plus a top-level function that starts the simulation
> Modules contain processes (C++ methods) and

instances of other modules
> Ports on modules define their interface

• Rich set of port data types (hardware modeling, etc.)
> Signals in modules convey information between

instances
> Clocks are special signals that run periodically and

can trigger clocked processes
> Rich set of numeric types (fixed and arbitrary

precision numbers)

Copyright © 2001 Stephen A. Edwards All rights reserved

Three Types of Processes
> METHOD

• Models combinational logic

> THREAD
• Models testbenches

> CTHREAD
• Models synchronous FSMs

Copyright © 2001 Stephen A. Edwards All rights reserved

METHOD Processes
> Triggered in response to changes on inputs

> Cannot store control state between invocations

> Designed to model blocks of combinational logic

Copyright © 2001 Stephen A. Edwards All rights reserved

METHOD Processes

SC_MODULE(onemethod) {
sc_in<bool> in;
sc_out<bool> out;

void inverter();

SC_CTOR(onemethod) {

SC_METHOD(inverter);
sensitive(in);

}
};

Process is simply a
method of this class

Instance of this
process created

and made sensitive
to an input

10

Copyright © 2001 Stephen A. Edwards All rights reserved

METHOD Processes
> Invoked once every time input “ in” changes

> Should not save state between invocations

> Runs to completion: should not contain infinite loops
• Not preempted

void onemethod::inverter() {
bool internal;
internal = in;
out = ~internal;

}

Read a value from the port

Write a value to an
output port

Copyright © 2001 Stephen A. Edwards All rights reserved

THREAD Processes
> Triggered in response to changes on inputs

> Can suspend itself and be reactivated
• Method calls wait to relinquish control
• Scheduler runs it again later

> Designed to model just about anything

Copyright © 2001 Stephen A. Edwards All rights reserved

THREAD Processes

SC_MODULE(onemethod) {
sc_in<bool> in;
sc_out<bool> out;

void toggler();

SC_CTOR(onemethod) {

SC_THREAD(toggler);
sensitive << in;

}

};

Process is simply a
method of this class

Instance of this
process created

alternate sensitivity
list notation

Copyright © 2001 Stephen A. Edwards All rights reserved

THREAD Processes
> Reawakened whenever an input changes

> State saved between invocations

> Infinite loops should contain a wait()

void onemethod::toggler() {
bool last = false;
for (;;) {
last = in; out = last; wait();
last = ~in; out = last; wait();

}
}

Relinquish control
until the next
change of a signal
on the sensitivity
list for this process

Copyright © 2001 Stephen A. Edwards All rights reserved

CTHREAD Processes
> Triggered in response to a single clock edge

> Can suspend itself and be reactivated
• Method calls wait to relinquish control
• Scheduler runs it again later

> Designed to model clocked digital hardware

Copyright © 2001 Stephen A. Edwards All rights reserved

CTHREAD Processes

SC_MODULE(onemethod) {
sc_in_clk clock;
sc_in<bool> trigger, in;
sc_out<bool> out;

void toggler();

SC_CTOR(onemethod) {

SC_CTHREAD(toggler, clock.pos());
}

};

Instance of this
process created and
relevant clock edge
assigned

11

Copyright © 2001 Stephen A. Edwards All rights reserved

CTHREAD Processes
> Reawakened at the edge of the clock> State saved between invocations> Infinite loops should contain a wait()

void onemethod::toggler() {
bool last = false;
for (;;) {
wait_until(trigger.delayed() == true);
last = in; out = last; wait();
last = ~in; out = last; wait();

}
}

Relinquish control
until the next clock
cycle

Relinquish control
until the next clock
cycle in which the
trigger input is 1

Copyright © 2001 Stephen A. Edwards All rights reserved

SystemC 1.0 Scheduler
> Assign clocks new values

> Repeat until stable
• Update the outputs of triggered SC_CTHREAD

processes
• Run all SC_METHOD and SC_THREAD processes

whose inputs have changed

> Execute all triggered SC_CTHREAD methods. Their
outputs are saved until next time

Copyright © 2001 Stephen A. Edwards All rights reserved

Scheduling
> Clock updates outputs of SC_CTHREADs
> SC_METHODs and SC_THREADs respond to this

change and settle down
> Bodies of SC_CTHREADs compute the next state

Sync. Async. Clock

