
1

Copyright © 2001 Stephen A. Edwards All rights reserved

Review for Midterm

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards All rights reserved

What Have We Covered?
� General Language Issues

� Assembly Languages

� C

� C++

Copyright © 2001 Stephen A. Edwards All rights reserved

General Language Issues
� Syntax, Semantics, and Models of Computation� Specification versus Modeling� Concurrency: Two things at once� Nondeterminsm: Unpredictability� Types of communication: Memory, broadcasting� Hierarchy

Copyright © 2001 Stephen A. Edwards All rights reserved

Models of Computation
� All languages we have studied thus far use the same

model of computation:
• Imperative program operating on a memory space

Fetch an instruction

Read its operands

Perform the action

Save the results

Go on to the next instruction

Copyright © 2001 Stephen A. Edwards All rights reserved

Specification and Modeling

� Modeling languages allow you to
describe something that does or
will exist

� Distinction a function of the model
and the language’s semantics

� How do you want to use the program?

� Specification languages say “ build this,
please”

Copernican Model
of the Solar System

Copyright © 2001 Stephen A. Edwards All rights reserved

Nondeterminism
� You simply cannot predict what wil l happen� No statistical distribution, no expected behavior� It may not work, work for the moment and fail, or

always work� You saw this in the homework assignment� Nondeterministic language allows nondeterministic
programs

2

Copyright © 2001 Stephen A. Edwards All rights reserved

Assembly Languages
� Program a sequence of instructions� Embodies the Von Neumann model of computation:� fetch, read, execute, store

� Instructions consist of opcode and operands� Registers and address ing modes

Copyright © 2001 Stephen A. Edwards All rights reserved

CISC Assembly Language
� Designed for humans to write

� Often fewer, special-purpose registers� Single instruction can perform a lot of work� Two-address instructions (source1, source2/dest)� Diff icult to p ipeline� Diff icult compiler target (hard to model)

Copyright © 2001 Stephen A. Edwards All rights reserved

RISC Assembly Language
� Simple, more orthogonal� Three-operand instructions (source1, source2, dest)� More, uniformly-access ible registers� Many have delayed branch instructions

j MyLabel

add R1, R2, R3 % Executed after the jump instruction

sub R2, R3, R4 % Not executed

Copyright © 2001 Stephen A. Edwards All rights reserved

Main DSP Application
� Finite Impulse Response filter (FIR)� Can be used for lowpass, highpass, bandpass, etc.� Basic DSP operation

� For each sample, computes

yn = Σ ai xn+i

� a0 … ak are filter coeff icients� xn and yn are the nth input and output sample

i=0

k
z-1z-1 z-1

Copyright © 2001 Stephen A. Edwards All rights reserved

Traditional DSP Architectures
� Multiply-accumulate operation central� Small number of special-purpose registers� Stripped-down datapath to maximize speed, minimize

cost, power� Diff icult to program automatically� Specialized instruction-level parallelism� Architecture heavily specialized to application
domain

• Complex addressing modes
• MAC instruction
• Limited zero-overhead loop s

Copyright © 2001 Stephen A. Edwards All rights reserved

VLIW Architectures
� Next step on the path toward more instruction-level

parallelism� More orthogonal: more costly, but more flexible than
traditional DSPs� Bigger register banks� Simple RISC-like instructions issued in parallel� Multiple, slightly differentiated computational units

� Virtually imposs ible to program by hand� Reasonable compiler target

3

Copyright © 2001 Stephen A. Edwards All rights reserved

The C Language
� High-level assembly for systems programming� Originally used to develop the Unix operating system� Pragmatic language as a result

� Stack-frame based mechanism for recursion,
automatic variables

� Low-level model of memory inherited from typeless
BCPL� Influenced its view of arrays, pointers

Copyright © 2001 Stephen A. Edwards All rights reserved

C Programs
� Collection of Functions

• Recursive
• Automatic (local) variables� Functions contain statements
• Simple control-flow (if-else, for, while, swi tch)� Statements contain express ions
• Powerful menagerie of operators
• Arithmetic, log ical, bit-oriented, comparison,

ass ignment

Copyright © 2001 Stephen A. Edwards All rights reserved

C Types
� Based on processor’s natural types� (Actually, a PDP-11’s natural types)

� Integers� Floating-point numbers� Bytes (characters)

� Funny declarator syntax
• int (*f)(doub le, int)

Copyright © 2001 Stephen A. Edwards All rights reserved

C Structs and Unions
� Struct:� Way to group objects in memory� Padded to guarantee alignment requirements� Each field g iven its own storage

� Union:� Way to store different objects in the same space� Size equal to size of largest element� Each field stored in the same place

Copyright © 2001 Stephen A. Edwards All rights reserved

Dynamic Memory Management
� Malloc() and free() system calls� Maintains a “ free list” of available storage� Malloc() locates suitable storage, or requests more

from OS if necessary� Free() release its given area to free list, updates the
data structure

� Can be slow and unpredictable� Time/space overhead

Copyright © 2001 Stephen A. Edwards All rights reserved

C Arrays
� View left over from BCPL’s typeless view of memory

� a[k] is equivalent to a + k (pointer arithmetic)

� Thus a[0] is the base of the array

� Objects in array s imply tiled

4

Copyright © 2001 Stephen A. Edwards All rights reserved

C Operators
� Arithmetic + *� Logical & |� Lazy logical && || (expand to conditional branches)� Pointer arithmetic allowed (from BCPL)

Copyright © 2001 Stephen A. Edwards All rights reserved

setjmp/longjmp
� A way to exit from deeply nested functions

���	�
������������������������ ��� !�"#�$�%&'�(�) *,+-/.�01243�5647�8 9: ;�<=?>�@�AB�C�D?E�F�G ;B <�=C�D HI
J4KLM�N�OQPR	S�TU�V WX Y�Z�[�\]�^�_�`�ab�cd egfhji

k4l�mn4o�p�qrts4u�vw4x�y z{ s�u�vw�x�y�|}�~����� ���4�g��,�4�j�

Stores a jump target

Stores context, returns 0

Jumps back to target in
jmpbuf

Copyright © 2001 Stephen A. Edwards All rights reserved

Setjmp/longjmp
� The weird part: longjmp sends control back to the

setjmp call that initialized the jmp_buf

���Q���������t��������� ��� ���� �Q ¡	¢�£¤�¥ �� ¢�£¡ ¤�¥�¦§�¨©ª�« ¬�¬®¯�¯±°
²³�´µt¶4·�¸º¹¼»½�¾�¿ºÀÂÁÄÃÅ®ÆÇQÈ ¶�É�É Ç�Ê ·Ë	ÌtÍ ½�Î�Î Ì4Ï ¾ÐÃÅ »ÁÒÑ È · ´�ÓÕÔÖ Í ¾ µ�×ÙØÚÛ�ÜÝtÞ4ß®àÙá¼âã�äæågçÂèÄéê ë�ì�í4î	ïð�ñ�ò4ó	ô	õö�÷ø Ú Ü ë�ëÛ Ý ð�ð ßä�ùæé â±úQûü ê èÐýtþ ßä�Ü�ÿ��Ý������

� It’s as if setjmp returns twice

Copyright © 2001 Stephen A. Edwards All rights reserved

Using setjmp/longjmp
	�
��������������������������� !"����#�$�%�&'�(�)�* +-,.0/�12$3%�&(3)�* 45 6 ��7 $�%�&8���9 (�)�* 68 ��7��9 :;

�� #��� ' %�<
��>=)? ���A@
����� #' <ABDC �?>EDF � G � , <>BH � / ?IE�JK LM�NDO3PQDR3S TVU�WX0Y�Z\[]
^_�`a�b�cd�e\fg3h�i�jlk ^_�mn c�o�p�qh�r�s�t fk or ps q�u�v�wt�x�y�z W�W [Z�Z{]
di�|}I^ m�~��_�n�����3��3���D����3��������������������I���������� ¡£¢ �¤�¥¦�§�� ���¨A� ��£©�ª« �D¥�¤¬�®I©¬�¯�°�±² ��³����´�µ3¶�· �¸��¹�
�I� ©� �º �� �¹¬�¥�» �

¯´ ¥I¼3©½�¾¿ ¬£À�Á
Â>Ã�ÃÅÄ�ÃÆ�ÇÈIÉ�É�ÊAÉ�Ë¹Ì�ÍÎ Ä�ÏÂ�ÐÑ�ÒÊ�Ó�È�ÔÕ�Ö�×ØÙÚ�Û�ÜÞÝß{à�á�â�ã¹äå�æ�çèÞé
ÚIÃDÂ�Û�ê çà�É¹È�á�ë éìí

ìí

Copyright © 2001 Stephen A. Edwards All rights reserved

Using setjmp/longjmp
î Where an error occurs

Ò�ïÖ�ð ÆË Ñ�Û3ñ�Ò × ÙÕ�á�òIÖ Ø ß�óô Ð>Ã�Ä�õ�Ú�öÔ>ÉDÊ�÷�à�ø ÂÈ æè
öø ÄÊ>× Ùù3Ï�úØ ßû3Ó�ü ÆË ùû ÏÓ ú�Ú�õ�ïü�à�÷�ð ýþ ÿ���������	��
�������	������� ÿ�����������

� Wil l exit this function as well as others currently
being executed

� Does not do any c lean-up on the way

Copyright © 2001 Stephen A. Edwards All rights reserved

C++
� C with facilities for structuring very large programs

� Classes for new data types
� Operator overloading for convenient arithmetic

expressions
� References for pass-by-name arguments
� Inline functions for speed
� Templates for polymorphism
� Exceptions
� Vast standard library

5

Copyright © 2001 Stephen A. Edwards All rights reserved

Classes
� Extension of C struct that binds functions to the

object
� Inheritance: adding new fields, methods to an

existing class to build a new one
� Object layout model

• Single inheritance uses a trick
• New data members s imply tacked on at the end
• Can’t remove data members in derived classes
• Multiple inheritance more complicated

Copyright © 2001 Stephen A. Edwards All rights reserved

Virtual Functions
� Normal methods dispatched by the static type of the

object determined at compile time
� Virtual functions dispatched by the actual type of the

object at run time

struct A {
 void f();
 virtual void g();
};

struct B : A {
 void f();
 virtual void g();
};

A* a = new B;
a->f(); // calls A::f()
a->g(); // calls B::g()

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementing Virtual Functions
� Each object of a class with virtual functions has an

extra pointer to its virtual table
� Virtual table has pointers to the virtual functions for

the class
� Compiler fills in these virtual tables

Copyright © 2001 Stephen A. Edwards All rights reserved

Const
� Way to pass pointers to objects that should not be

modified

void g(char *a, const char *b);

void f(char *a, const char *b) {

 *a = ‘a’; // OK

 *b = ‘b’; // Error: b is const

 g(a,a); // OK: non-const cast to const

 g(b,b); // Error: const b cast to non-const

}

Copyright © 2001 Stephen A. Edwards All rights reserved

Inline
� C++ can “ inline” function calls: copy the function’s

body to the call site

inline int sum(int a, int b) { return a + b; }

c = sum(5, 6);

is compiled as

c = 5 + 6;

Copyright © 2001 Stephen A. Edwards All rights reserved

FAQs
� Do we need to know each assembly language in

detail for the test?

No: I want you to understand the structure of the
assembly languages.

� Wil l the test require writing a big program?

Not a big one, but perhaps a small one.
� Are C++ compilers implemented in one pass like C

compilers?

Definitely not. C++ is much too complex. Modern C
compilers make multiple passes, too.

6

Copyright © 2001 Stephen A. Edwards All rights reserved

Program Size Versus Speed
� Not always a direct t rade-off

� Dumb example:

int sum(int a, int b) {
 return a + b;
}

c = sum(5,6) + sum(7,8);

int sum1(int a, int b) {
 return a + b;
}

int sum2(int a, int b) {
 return a + b;
}

c = sum1(5,6) + sum2(7,8);

Copyright © 2001 Stephen A. Edwards All rights reserved

Maybe not so dumb

Template <class T> sort(int size, T* array) { … }

char *c[10];

sort<char *>(10,c);

float *c[10];

sort<float *>(10,c);

� Each call of sort will generate a distinct, identical
copy of the code for sort

