
1

Copyright © 2001 Stephen A. Edwards All rights reserved

Review of Digital Logic

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards All rights reserved

Synchronous Digital Logic Systems
� Raw materials: CMOS transistors and wires on ICs
� Wires are excellent conveyors of voltage

• Little leakage
• Fast, but not instantaneous propagation
• Many orders of magnitude more conductive than glass

� CMOS transistors are reasonable switches
• Finite, mostly-predictable switching times
• Nonlinear transfer characteristics
• Voltage gain is in the 100s

Copyright © 2001 Stephen A. Edwards All rights reserved

Philosophy
� Have to deal with unpredictable voltages and

unpredictable delays

� Digital: discretize values to avoid voltage noise
• Only use two values
• Voltages near these two are “ snapped” to remove

noise
� Synchronous: discretize time to avoid time noise

• Use a global, periodic clock
• Values that become valid before the clock are ignored

until the clock arrives

Copyright © 2001 Stephen A. Edwards All rights reserved

Combinational Logic

Copyright © 2001 Stephen A. Edwards All rights reserved

Combinational Logic
� Boolean Logic Gates

Inverter

A Y

0 1

1 0

AND

AB Y

00 0

01 0

10 0

11 1

OR

AB Y

00 0

01 1

10 1

11 1

XOR

AB Y

00 0

01 1

10 1

11 0

Copyright © 2001 Stephen A. Edwards All rights reserved

A Full Adder
� Typical example of building a more complex function

A
B

Cin
S

Cout

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

2

Copyright © 2001 Stephen A. Edwards All rights reserved

Most Basic Computational Model
� Every gate is continuously looking at its inputs and

instantaneously setting its outputs accordingly
� Values are communicated instantly from gate outputs

to inputs

A B
C

A

B

C

Timing Diagram

All three switch
at exactly the

same time

Copyright © 2001 Stephen A. Edwards All rights reserved

Delays
� Real implementations are not quite so perfect
� Computation actually takes some time
� Communication actually takes some time

A B
C

A

B

C

Timing Diagram

Copyright © 2001 Stephen A. Edwards All rights reserved

Delays
� Delays are often partially unpredictable
� Usually modeled with a minimum and maximum

A B
C

A

B

C

Timing Diagram

Copyright © 2001 Stephen A. Edwards All rights reserved

Busses
� Wires sometimes used as shared communication

medium
� Think “ party-line telephone”
� Bus drivers may elect to set the value on a wire or let

some other driver set that value
� Electrically disastrous if two drivers “ fight” over the

value on the bus

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementing Busses
� Basic trick is to use a “ tri-state” driver
� Data input and output enable

OE
D

Q

S
hared bus

� When driver wants
to send values on
the bus, OE = 1 and
D contains the data

� When driver wants
to listen and let
some other driver
set the value, OE = 0
and Q returns the
value

Copyright © 2001 Stephen A. Edwards All rights reserved

Four-Valued Simulation
� Wires in digital logic often modeled with four values

• 0, 1, X, Z

� X represents an unknown state
• State of a latch or flip-flop when circuit powers up
• Result of two gates trying to drive wire to 0 and 1

simultaneously
• Output of flip-flop when setup or hold time violated
• Output of a gate reading an “ X” or “ Z”

� Z represents an undriven state
• Value on a shared bus when no driver is output-

enabled

3

Copyright © 2001 Stephen A. Edwards All rights reserved

Sequential Logic and Timing

Copyright © 2001 Stephen A. Edwards All rights reserved

Sequential Logic
� Simply computing functions usually not enough
� Want more time-varying behavior
� Common model: combinational logic with state-

holding elements

Combinational
logic

Inputs Outputs

State-holding elements

Clock Input

Copyright © 2001 Stephen A. Edwards All rights reserved

State Machines
� Common use of state-holding elements
� Idea: machine may go to a new state in each cycle
� Output and next state dependent on present state
� E.g., a four-counter

C’ / 0
C / 1

C’ / 1

C’ / 2

C / 2

C / 3C’ / 3

C / 0

Copyright © 2001 Stephen A. Edwards All rights reserved

Latches & Flip-Flops
� Two common types of state-holding elements
� Latch

• Level-sensitive
• Transparent when clock is high
• Holds last value when clock is low
• Cheap to implement
• Somewhat unwieldy to design with

� Flip-flop
• Edge-sensitive
• Always holds value
• New value sampled when clock transitions from 0 to 1
• More costly to implement
• Much easier to design with

Copyright © 2001 Stephen A. Edwards All rights reserved

Latches & Flip-Flops
� Timing diagrams for the two common types:

Clk

D Q

D Q

D

Clk

Latch

Flip-
Flop

Copyright © 2001 Stephen A. Edwards All rights reserved

RAMs
� Another type of state-holding element
� Addressable memory
� Good for storing data like a von Neumann program

Data In

Address

Read
Write

Data Out

4

Copyright © 2001 Stephen A. Edwards All rights reserved

RAMs
� Write cycle

• Present Address, data to be written
• Raise and lower write input

� Read cycle
• Present Address
• Raise read
• Contents of address appears on data out

Data In

Address
Read
Write

Data Out

Copyright © 2001 Stephen A. Edwards All rights reserved

Setup & Hold Times
� Flip-flops and latches have two types of timing

requirements:
� Setup time

• D input must be stable some time before the clock
arrives

� Hold time
• D input must remain stable some time after the clock

has arrived

Copyright © 2001 Stephen A. Edwards All rights reserved

Setup & Hold Times
� For a flip-flop (edge-sensitive)

D

Clk

Setup time:

D must not
change here

Hold time:

D must not
change here

Copyright © 2001 Stephen A. Edwards All rights reserved

Synchronous System Timing
� Budgeting time in a typical synchronous design

Clock period

Clock
skew

Clk to D delay

Slowest logical
path

Setup Time

Clock
skew

Copyright © 2001 Stephen A. Edwards All rights reserved

Digital Systems

Copyright © 2001 Stephen A. Edwards All rights reserved

Typical System Architecture
� Most large digital systems consist of

� Datapath
• Arithmetic units (adders, multipliers)
• Data-steering (multiplexers)

� Memory
• Places to store data across clock cycles
• Memories, register files, etc.

� Control
• Interacting finite state machines
• Direct how the data moves through the datapath

5

Copyright © 2001 Stephen A. Edwards All rights reserved

Typical System Architecture
� Primitive datapath plus controller

Registers Memory

Controller

Shared Bus

Read/Write

Addr.

Reg.

LatchLatchOperation Result

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementing Digital Logic
� Discrete logic chips

• NAND gates four to a chip and wire them up (e.g., TTL)
� Programmable Logic Arrays (PLAs)

• Program a chip containing ANDs feeding big OR gates
� Field-Programmable Gate Arrays (FPGAs)

• Program lookup tables and wiring routes
� Application-Specific Integrated Circuit (ASICs)

• Feed a logic netlist to a synthesis system
• Generate masks and hire someone to build the chip

� Full-custom Design
• Draw every single wire and transistor yourself
• Hire someone to fabricate the chip or be Intel

Copyright © 2001 Stephen A. Edwards All rights reserved

Implementing Digital Logic
� Discrete logic is dead

• Too many chips needed compared to other solutions
� PLAs

• Nice predicable timing, but small and limited
� FPGAs

• High levels of integration, very convenient
• Higher power and per-unit cost than ASICs and custom

� ASICs
• Very high levels of integration, costly to design
• Low power, low per-unit cost, but huge initial cost

� Full Custom
• Only cost-effective for very high-volume parts
• E.g., Intel microprocessors

Copyright © 2001 Stephen A. Edwards All rights reserved

Digital Logic in Embedded Systems
� Low-volume products (1000s or less) typically use

FPGAs
� High-volume products usually use ASICs

� Non-custom logic usually implemented using
application-specific standard parts

• Chipsets
• Graphics controllers
• PCI bus controllers
• USB controllers
• Ethernet interfaces

