
1

Copyright © 2001 Stephen A. Edwards All rights reserved

Introduction to Design
Languages

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards All rights reserved

Last Time
� Introduction to the class

� Embedded systems
� Role of languages: shape solutions
� Project proposals due September 26

• Do you know what you’re doing? Lobby, Paris Opera
House

Copyright © 2001 Stephen A. Edwards All rights reserved

This Time
� General ideas behind languages
� Syntax, Semantics, and Models of Computation
� Specification versus Modeling
� Concurrency: Two things at once
� Nondeterminsm: Unpredictability
� Types of communication: Memory, broadcasting
� Hierarchy

Copyright © 2001 Stephen A. Edwards All rights reserved

Syntax, Semantics, and Model
� Marionette model

� You control the syntax

� The semantics connect the
syntax to the model

� You ultimately affect a model

Copyright © 2001 Stephen A. Edwards All rights reserved

Syntax
� Formally:

Alphabet
• DNA {A T G C}

• Student Transcripts {w1007-02 w1009-01 w4559-02 …}

• English {aardvark abacus abalone …}

• Verilog {always module …}

Rosetta stone

Language: infinite set of strings
from an alphabet

Copyright © 2001 Stephen A. Edwards All rights reserved

Computational Model
� What a string ultimately affects
� Does not need to be unique

Model
• DNA Proteins suspended in water

• Student Transcripts Your knowledge
The admiration of others

• English Natural language understanding

• Verilog Discrete event simulator
Netlist of gates and flip-flops

Babbage’s
Difference Engine

2

Copyright © 2001 Stephen A. Edwards All rights reserved

Semantics
� How to interpret strings in the model
� Also not necessarily unique

Semantics
• DNA [[AGA]] = Arginine

[[TAG]] = STOP

• Student Transcripts [[w1007-02]] = Java

• English [[Look out!]] = I’m in danger

• Verilog [[always @posedge clk]] = FF

“When I use a
word, it means

just what I
choose it to

mean - neither
more nor less.”

Copyright © 2001 Stephen A. Edwards All rights reserved

Defining Syntax
� Generally done with a grammar
� Recursively-defined rules for constructing valid

sentences
� “ Backus-Naur Form”

expr ::

literal

| expr + expr

| expr * expr

� Not a focus of this class

Copyright © 2001 Stephen A. Edwards All rights reserved

Defining Semantics
� Operational Semantics

• Abstract machine (memory, program counter)
• Each statement advance machine state
• Closest to implementation

� Denotational Semantics
• Context domain (memory state)
• Answer domain (result, I/O behavior)
• Meaning function: Program →→→→ (Context →→→→ Answer)
• Much more mathematical
• Able to deal with recursion and self-reference

Copyright © 2001 Stephen A. Edwards All rights reserved

Specification and Modeling

� Modeling languages allow you to
describe something that does or
will exist

� Distinction a function of the model
and the language’s semantics

� How do you want to use the program?

� Specification languages say “ build this,
please”

Copernican Model
of the Solar System

Copyright © 2001 Stephen A. Edwards All rights reserved

Specification Versus Modeling
� C is a specification language

• Semantics very operational
• Clear how the language is to be translated into

assembly language

� Verilog is a modeling language
• Semantics suggestive of a simulation procedure
• Good for building a model that captures digital

hardware behavior (delays, race conditions, unknown
values)

• Not as good for specification: how do you build
something with a specific delay?

Copyright © 2001 Stephen A. Edwards All rights reserved

Gratuitous Picture
� Chartres Cathedral,

France

� Façade a renovation of
and earlier Romanesque
church (note rounded
windows)

� Right tower considered
the architectural gem

• Starts complicated
• Ends simple, to-the-point

3

Copyright © 2001 Stephen A. Edwards All rights reserved

Concurrency
� Why bother?
� Harder model to program

� Real world is concurrent
� Good controller architecture: concurrently-running

process controlling each independent system
component

� E.g., process for right brake, process for left brake,
process for brake pedal

Copyright © 2001 Stephen A. Edwards All rights reserved

The Challenge of Concurrency
� Synchronization
� How to arbitrate access to shared resources

• Memory
• I/O ports
• Actuators

� Different approaches to concurrency a focus of the
course

Copyright © 2001 Stephen A. Edwards All rights reserved

Approaches to Concurrency
� Shared memory / “ Every man for himself”

• Adopted by Java, other software languages
• Everything’s shared, nothing synchronized by default
• Synchronization through locks/monitors/semaphores
• Most flexible
• Easy to get wrong

� Synchronous
• Global clock regulates passage of time
• Very robust in the presence of timing uncertainty
• Proven very successful for hardware design
• Synchronization overhead often onerous

Copyright © 2001 Stephen A. Edwards All rights reserved

Communication and Concurrency
� Idea: let processes run asynchronously and only

force them to synchronize when they communicate

� Kahn Process Networks (later in the course)
• Communicate through channels
• Writer always continues
• Reader waits until data has arrived

� CAR Hoare’s Communicating
Sequential Processes

• Rendezvous-style communication:
• Processes that wish to

communicate both wait until the
other is ready to send/receive

Copyright © 2001 Stephen A. Edwards All rights reserved

Nondeterminism
� Does a program mean exactly one thing?

� Example from C:

printf(“ %d %d %d” , ++a, ++a, ++a);

� Argument evaluation order is undefined
� Program behavior subject to compiler interpretation
� Are you sure your program does what you think?

“Increment
a, return
result”

Copyright © 2001 Stephen A. Edwards All rights reserved

Nondeterministic Is Not Random
� Deterministic: 1+1 = 2 always

� Random: 1+1 = 2 50% of the time, 3 otherwise

� Nondeterministic: 1+1 = 2 or 3, but I’m not telling

� The nondeterministic behavior could
look determinstic, random, or
something worse

4

Copyright © 2001 Stephen A. Edwards All rights reserved

Nondeterminism Is Awful
� Much harder to be sure your specification or model is

correct

� True nondeterminstic language difficult to simulate
• Should produce “ any of these” results
• Must maintain all possible outcomes, which grows

exponentially

� Idiosyncrasies of a particular implementation of a
nondeterministic language often become the de facto
standard

Copyright © 2001 Stephen A. Edwards All rights reserved

Example From Verilog
� Concurrent procedure execution order undefined

always @(posedge clk) $write(“ a”)

always @(posedge clk) $write(“ b”)

� First implementation moved procedures between two
push-down stacks. Result:

a b b a a b b a a b b a

Later simulators had to match now-expected behavior

Copyright © 2001 Stephen A. Edwards All rights reserved

Nondeterminism Is Great
� True nondeterministic specification often

exponentially smaller than deterministic counterpart
� Implicit “ all possible states” representation
� E.g., nondeterministic finite automata for matching

regular expressions
� If system itself is truly nondeterministic, shouldn’t its

model also be?
� Can be used to expose design errors
� More flexible: only there if you want to use it

� Correctness remains more elusive

Copyright © 2001 Stephen A. Edwards All rights reserved

Communication
� Memory

• Value written to location
• Value stays until written again
• Value can be read zero or more times after write
• No synchronization

� Buffer
• Value written to buffer
• Value held until read
• Values read back in order they were written

Copyright © 2001 Stephen A. Edwards All rights reserved

Communication
� Wires

• May or may not have explicit write operation
• Value immediately seen by all readers
• More like a system of equations than a sequence of

operations

Copyright © 2001 Stephen A. Edwards All rights reserved

Hierarchy
� Most languages have ability to create pieces and

assemble them
� Advantage: Information hiding

• User does not know details of a piece
• Easier to change implementation of piece without

breaking whole system
• Easier to get small piece right
• Facilitates abstraction: easier to understand the whole

� Advantage: Reuse
• Pieces less application-specific; can be used

elsewhere

5

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary
� Languages have syntax, semantics, and model
� Syntax usually defined with grammar
� Semantics can be defined operationally or

denotationally
� Many possible models: A focus of this class

� You ask for something with a specification language
� You describe something that does or will exist with a

modeling language

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary
� Concurrency useful for handling real world
� Synchronization big challenge

• Shared memory and locks
• Synchrony
• Rendezvous synchronization
• Buffer synchronization

� Nondeterminism
• Good for certain models
• Can be very succinct
• Makes specification hard
• Makes verification harder

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary
� Communication techniques

• Memory
• Buffered
• Wired

� Hierarchy for information hiding

