
1

Copyright © 2001 Stephen A. Edwards All rights reserved

Concurrency in Java

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards All rights reserved

The Java Language
� Developed by James Gosling et al. at

Sun Microsystems in the early 1990s

� Originally called “ Oak,” first intended
application was as an OS for TV set
top boxes

� Main goals were portability and safety

� Originally for embedded consumer
software

Copyright © 2001 Stephen A. Edwards All rights reserved

The Java Language
� Set-top boxes: nobody cared
� Next big application: “ applets”

• Little programs dynamically added to web browsers
� Enormous Sun marketing blitz
� Partial failure:

• Incompatible Java implementations
• Few users had enough bandwidth
• Fantastically slow Java interpreters

� Javascript has largely taken over this role
• High-level scripting language
• Has nothing to do with the Java language

Copyright © 2001 Stephen A. Edwards All rights reserved

The Java Language
� Where does Java succeed?

� Corporate programming
• E.g., dynamic web page generation from large

corporate databases in banks
• Environment demands simpler language

� Unskilled programmers, unreleased software
• Speed, Space not critical

� Tends to be run on very large servers
• Main objective is reduced development time

Copyright © 2001 Stephen A. Edwards All rights reserved

The Java Language
� Where does Java succeed?

� Education
• Well-designed general-purpose programming language
• Spares programmer from many common pitfalls

� Uninitialized pointers
� Memory management

• Widely known and used, not just a teaching language

� Embedded Systems?
• Jury is still out

Copyright © 2001 Stephen A. Edwards All rights reserved

Overview of Java
� Derived from C++, but incompatible
� Didn’t want to call it “ C += 2” ?
� No “ loose” functions: everything part of a class
� Better package support (no preprocessor)
� Safer object references instead of pointers
� Large, powerful class library
� Automatic garbage collection

• Programmer spared from memory management

2

Copyright © 2001 Stephen A. Edwards All rights reserved

Concurrency in Java
� Language supports threads

� Multiple contexts/program counters running within
the same memory space

� All objects can be shared among threads

� Fundamentally nondeterministic

� Language provide some facilities to help avoid it

Copyright © 2001 Stephen A. Edwards All rights reserved

Thread Basics
� How to create a thread:

���������	��
��������������������������������������
���� ���!��#"�$�!��%�&���('�)*� /* thread body */ +

+

��
��(���������,��#-.�/�&0���
��1��������32 // Create thread
,��546�/�������1'�)52 // Starts thread running at run()

// Returns immediately

Copyright © 2001 Stephen A. Edwards All rights reserved

Thread Basics
� A thread is a separate program counter

… and stack, local variables, etc.

� Not an object or a collection of things

� Classes, objects, methods, etc. do not belong to a
thread

� Any method may be executed by one or more
threads, even simultaneously

Copyright © 2001 Stephen A. Edwards All rights reserved

The Sleep Method

���� ���!��	"�$�!��.������'�)��7 $1��'(2�28)��
���9
:�
�/�������('&;/<�<�<�)32 // Pause for 1 second

+ ��������*'&=��/���1���&����������>&����������!/$(�?��)��
�����������@2 // caused by thread.interrupt()

+A
(������,B4C$����548����!��/������'�D���!���E�F�)52
+

+

Copyright © 2001 Stephen A. Edwards All rights reserved

The Sleep Method

���� ���!��	"�$�!��.������'�)��7 $1��'(2�28)��
���9
:�
�/�������('&;/<�<�<�)32

+ ��������*'&=��/���1���&����������>&����������!/$(�?��)��
�����������@2

+A
(������,B4C$����548����!��/������'�D���!���E�F�)52
+

+

Does this print Tick once a
second? No.

sleep() delay a lower bound

Rest of loop takes
indeterminate amount of time

Copyright © 2001 Stephen A. Edwards All rights reserved

Races
� In a concurrent world, always

assume someone else is
accessing your objects

� Other threads are your
adversary

� Consider what can happen
when simultaneously reading
and writing:

f1 = a.field1

f2 = a.field2

a.field1 = 1

a.field2 = 2

Thread 1 Thread 2

3

Copyright © 2001 Stephen A. Edwards All rights reserved

Races
� Thread 1 goes first
� Thread 1 reads original values

f1 = a.field1

f2 = a.field2

a.field1 = 1

a.field2 = 2

Thread 1 Thread 2

Copyright © 2001 Stephen A. Edwards All rights reserved

Races
� Thread 2 goes first
� Thread 1 reads new values

f1 = a.field1

f2 = a.field2

a.field1 = 1

a.field2 = 2

Thread 1 Thread 2

Copyright © 2001 Stephen A. Edwards All rights reserved

Races
� Interleaved execution
� Thread 1 sees one new value, one old value

f1 = a.field1

f2 = a.field2

a.field1 = 1

a.field2 = 2

Thread 1 Thread 2

Copyright © 2001 Stephen A. Edwards All rights reserved

Non-atomic Operations
� 32-bit reads and writes are guaranteed atomic
� 64-bit operations may not be

� Therefore,

int i; double d;

Thread 1 Thread 2

i = 10; i = 20; i will contain 10 or 20

d = 10.0; d = 20.0; i might contain garbage

Copyright © 2001 Stephen A. Edwards All rights reserved

Per-Object Locks
� Each Java object has a lock that may

be owned by at least one thread

� A thread waits if it attempts to obtain
an already-obtained lock

� The lock is a counter: one thread
may lock an object more than once

Copyright © 2001 Stephen A. Edwards All rights reserved

The Synchronized Statement
� A synchronized statement gets an object’s lock

before running its body

Counter mycount = new Counter;

synchronized(mycount) {

mycount.count();

}

� Releases the lock when the body terminates
� Choice of object to lock is by convention

“get the lock for
mycount before calling
count()”

4

Copyright © 2001 Stephen A. Edwards All rights reserved

Synchronized Methods

class AtomicCounter {

private int _count;

public synchronized void count() {

_count++;

}

}

“get the lock for the
AtomicCounter object before
running this method”

This implementation
guarantees at most one
thread can increment the
counter at any time

Copyright © 2001 Stephen A. Edwards All rights reserved

Deadlock

synchronized(Foo) {

synchronized(Bar) {

/* Deadlocked */

}

}

synchronized(Bar) {

synchronized(Foo) {

/* Deadlocked */

}

}

� Rule: always acquire locks in the same order

Copyright © 2001 Stephen A. Edwards All rights reserved

Priorities
� Each thread has a priority from 1 to 10 (5 typical)

� Scheduler’s job is to keep highest-priority threads
running

� thread.setPriority(5)

Copyright © 2001 Stephen A. Edwards All rights reserved

What the Language Spec. Says
� From The Java Language Specification

� Vague enough for you?

Every thread has a priority. When there is
competition for processing resources,
threads with higher priority are generally
executed in preference to threads with
lower priority. Such preference is not,
however, a guarantee that the highest
priority thread will always be running, and
thread priorities cannot be used to reliably
implement mutual exclusion.

Copyright © 2001 Stephen A. Edwards All rights reserved

Multiple threads at same priority?
� Language gives implementer freedom

� Calling yield() suspends current thread to allow other
at same priority to run … maybe

� Solaris implementation runs threads until they stop
themselves (wait(), yield(), etc.)

� Windows implementation timeslices

Copyright © 2001 Stephen A. Edwards All rights reserved

Starvation
� Not a fair scheduler

� Higher-priority threads can consume all resources,
prevent lower-priority threads from running

� This is called starvation

� Timing dependent: function of program, hardware,
and Java implementation

5

Copyright © 2001 Stephen A. Edwards All rights reserved

Waiting for a Condition
� Say you want a thread to wait for a condition before

proceeding

� An infinite loop may deadlock the system

while (!condition) {}

� Yielding avoids deadlock, but is very inefficient

while (!condition) yield();

Copyright © 2001 Stephen A. Edwards All rights reserved

Java’s Solution: wait() and notify()
� wait() like yield(), but requires other thread to

reawaken it

while (!condition) wait();

� Thread that might affect this condition calls() notify
to resume the thread

� Programmer responsible for ensuring each wait() has
a matching notify()

Copyright © 2001 Stephen A. Edwards All rights reserved

wait() and notify()
� Each object has a set of threads that are waiting for

its lock (its wait set)

synchronized (obj) { // Acquire lock on obj

obj.wait(); // suspend

// add thread to obj’s wait set

// relinquish locks on obj

In other thread:

obj.notify(); // enable some waiting thread

Copyright © 2001 Stephen A. Edwards All rights reserved

wait() and notify()

1. Thread 1 acquires lock on object

2. Thread 1 calls wait() on object

3. Thread 1 releases lock on object, adds itself to
object’s wait set

4. Thread 2 calls notify() on object (must own lock)

5. Thread 1 is reawakened: it was in object’s wait set

6. Thread 1 reacquires lock on object

7. Thread 1 continues from the wait()

Copyright © 2001 Stephen A. Edwards All rights reserved

wait() and notify()
� Confusing enough?

� notify() nodeterministically chooses one thread to
reawaken (may be many waiting on same object)

• What happens when there’s more than one?

� notifyAll() enables all waiting threads
• Much safer?

Copyright © 2001 Stephen A. Edwards All rights reserved

Building a Blocking Buffer

class OnePlace {
El value;

public synchronized void write(El e) { … }
public synchronized El read() { … }

}

� Idea: One thread at a time can write to or read from
the buffer

� Thread will block on read if no data is available
� Thread will block on write if data has not been read

6

Copyright © 2001 Stephen A. Edwards All rights reserved

Building a Blocking Buffer

synchronized void write(El e) throws InterruptedException
{
while (value != null) wait(); // Block while full
value = e;
notifyAll(); // Awaken any waiting read

}

public synchronized El read() throws InterruptedException
{
while (value == null) wait(); // Block while empty
El e = value; value = null;
notifyAll(); // Awaken any waiting write
return e;

}
Copyright © 2001 Stephen A. Edwards All rights reserved

Thread States
born

ready

running

blocked

dead

sleepingwaiting

���������	��

����������

� �� ����
��������� �

!#"%$ &�')(+*
,

tim
eout

terminate

I/O started

I/O
completed

