
1

Copyright © 2001 Stephen A. Edwards All rights reserved

Dataflow Languages

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards All rights reserved

Philosophy of Dataflow Languages

� Drastically different way of looking at computation

� Von Neumann imperative language style: program
counter is king

� Dataflow language: movement of data the priority

� Scheduling responsibili ty of the system, not the
programmer

Copyright © 2001 Stephen A. Edwards All rights reserved

Dataflow Language Model

� Processes communicating through FIFO buffers

Process 1 Process 2

Process 3

FIFO Buffer

FIFO Buffer
FIFO Buffer

Copyright © 2001 Stephen A. Edwards All rights reserved

Dataflow Languages

� Every process runs simultaneously

� Processes can be described with imperative code

� Compute … compute … receive … compute …
transmit

� Processes can only communicate through buffers

Copyright © 2001 Stephen A. Edwards All rights reserved

Dataflow Communication

� Communication is only through buffers
� Buffers usually treated as unbounded for flexibili ty
� Sequence of tokens read guaranteed to be the same

as the sequence of tokens wr itten
� Destructive read: reading a value from a buffer

removes the value
� Much more predictable than shared memory

Copyright © 2001 Stephen A. Edwards All rights reserved

Dataflow Languages

� Once proposed for general-purpose programming

� Fundamentally concurrent: should map more easily
to parallel hardware

� A few lunatics buil t general-purpose dataflow
computers based on this idea

� Largely a failure: memory spaces anathema to the
dataflow formalism

2

Copyright © 2001 Stephen A. Edwards All rights reserved

Applications of Dataflow

� Not a good fit for, say, a word processor
� Good for signal-processing applications
� Anything that deals wi th a continuous stream of data

� Becomes easy to parallelize
� Buffers typically used for signal processing

applications anyway

Copyright © 2001 Stephen A. Edwards All rights reserved

Applications of Dataflow

� Perfect fit for block-diagram specifications
• Circuit diagrams
• Linear/nonlinear con trol systems
• Signal processing

� Suggest dataflow semantics

� Common in Electrical Engineering

� Processes are blocks, connections are buffers

Copyright © 2001 Stephen A. Edwards All rights reserved

Kahn Process Networks

� Proposed by Kahn in 1974 as a general-purpose
scheme for parallel programming

� Laid the theoretical foundation for dataflow
� Unique attribute: deterministic

� Difficult to schedule
� Too flexible to make efficient, not flexible enough for

a wide class of applications
� Never put to widespread use

Copyright © 2001 Stephen A. Edwards All rights reserved

Kahn Process Networks

� Key idea:

Reading an empty channel blocks until data is available

� No other mechanism for sampling communication
channel’s contents

• Can’t check to see whether bu ffer is empty
• Can’t wait on multiple channels at once

Copyright © 2001 Stephen A. Edwards All rights reserved

Kahn Processes

� A C-like function (Kahn used Algol)
� Arguments include FIFO channels
� Language augmented wi th send() and wait()

operations that write and read from channels

Copyright © 2001 Stephen A. Edwards All rights reserved

A Kahn Process

� From Kahn’s original 1974 paper

process f(in int u, in int v, out int w)
{
 int i; bool b = true;
 for (;;) {
 i = b ? wait(u) : wait(w);
 printf("%i\n" , i);
 send(i, w);
 b = !b;
 }
}

f

u

v

w

Process alternately reads
from u and v, prints the data
value, and writes it to w

3

Copyright © 2001 Stephen A. Edwards All rights reserved

A Kahn Process

� From Kahn’s original 1974 paper

process f(in int u, in int v, out int w)
{
 int i; bool b = true;
 for (;;) {
 i = b ? wait(u) : wait(w);
 printf("%i\n" , i);
 send(i, w);
 b = !b;
 }
}

Process
interface
includes FIFOs

wait() returns the next
token in an input FIFO,
blocking if it’s empty

send() writes a data
value on an output FIFO

Copyright © 2001 Stephen A. Edwards All rights reserved

A Kahn Process

� From Kahn’s original 1974 paper

process g(in int u, out int v, out int w)
{
 int i; bool b = true;
 for(;;) {
 i = wait(u);
 if (b) send(i, v); else send(i, w);
 b = !b;
 }
}

gu

v

w

Process reads from u and
alternately copies it to v and w

Copyright © 2001 Stephen A. Edwards All rights reserved

A Kahn System

� Prints an alternating sequence of 0’s and 1’s

fg

h

h

Emits a 1 then copies input to output

Emits a 0 then copies input to output

Copyright © 2001 Stephen A. Edwards All rights reserved

Proof of Determinism

� Because a process can’t check the contents of
buffers, only read from them, each process only sees
sequence of data values coming i n on buffers

� Behavior of process:

Compute … read … compute … write … read …
compute

� Values written only depend on program state
� Computation only depends on program state
� Reads always return sequence of data values,

nothing more

Copyright © 2001 Stephen A. Edwards All rights reserved

Determinism

� Another way to see it:

� If I’m a process, I am only affected by the sequence
of tokens on my inputs

� I can’t tell whether they arr ive early, late, or in what
order

� I will behave the same in any case
� Thus, the sequence of tokens I put on my outputs is

the same regardless of the timing of the tokens on
my inputs

Copyright © 2001 Stephen A. Edwards All rights reserved

Scheduling Kahn Networks

� Challenge is running processes wi thout
accumulating tokens

A C

B

4

Copyright © 2001 Stephen A. Edwards All rights reserved

Scheduling Kahn Networks

� Challenge is running processes wi thout
accumulating tokens

A C

B
Always emit tokens

Only consumes
tokens from A

Tokens will
accumulate here

Copyright © 2001 Stephen A. Edwards All rights reserved

Demand-driven Scheduling?

� Apparent solution: only run a process whose outputs
are being actively solicited

� However...

A C

B D

Always
consume

tokens

Always
produce
tokens

Copyright © 2001 Stephen A. Edwards All rights reserved

Other Difficult Systems

� Not all systems can be scheduled wi thout token
accumulation

Produces
two a’s for

every b

a

b

Alternates
between
receiving
one a and

one b

Copyright © 2001 Stephen A. Edwards All rights reserved

Tom Parks’ Algorithm

� Schedules a Kahn Process Network in boun ded
memory if it is possible

� Start with bounded buffers
� Use any scheduling technique that avoids buffer

overflow
� If system deadlocks because of buffer overflow,

increase size of smallest buffer and continue

Copyright © 2001 Stephen A. Edwards All rights reserved

Parks’ Algorithm in Action

� Start with buffers of size 1
� Run A, B, C, D

A C

B D

Only consumes
tokens from A0-1-0

0-1

0-1-0

Copyright © 2001 Stephen A. Edwards All rights reserved

Parks’ Algorithm in Action

� B blocked waiting for space in B->C buffer
� Run A, then C
� System will run indefinitely

A C

B D

Only consumes
tokens from A0-1-0

1

0

5

Copyright © 2001 Stephen A. Edwards All rights reserved

Parks’ Scheduling Algorithm

� Neat trick
� Whether a Kahn network can execute in bounded

memory is undecidable
� Parks’ algorithm does not violate this
� It will run in boun ded memory if possib le, and use

unbounded memory if necessary

Copyright © 2001 Stephen A. Edwards All rights reserved

Using Parks’ Scheduling Algorithm

� It works, but…

� Requires dynamic memory allocation
� Does not guarantee minimum memory usage
� Scheduling choices may affect memory usage
� Data-dependent decisions may affect memory usage
� Relatively costly scheduling technique
� Detecting deadlock may be difficult

Copyright © 2001 Stephen A. Edwards All rights reserved

Kahn Process Networks

� Their beauty is that the scheduling algorithm does
not affect their functional behavior

� Difficult to schedule because of need to balance
relative process rates

� System inherently gives the scheduler few hints
about appropriate rates

� Parks’ algorithm expensive and fussy to implement
� Might be appropriate for coarse-grain systems

• Scheduling overhead dwarfed by process behavior

Copyright © 2001 Stephen A. Edwards All rights reserved

Synchronous Dataflow (SDF)

� Edward Lee and David Messerchmitt, Berkeley, 1987

� Restriction of Kahn Networks to allow compile-time
scheduling

� Basic idea: each process reads and writes a fixed
number of tokens each time it fires:

loop

 read 3 A, 5 B, 1 C … compute … wr ite 2 D, 1 E, 7 F

end loop

Copyright © 2001 Stephen A. Edwards All rights reserved

SDF and Signal Processing

� Restriction natural for multirate signal processing

� Typical signal-processing processes:

� Unit-rate
• Adders, multipliers

� Upsamplers (1 in, n out)
� Downsamplers (n in, 1 out)

Copyright © 2001 Stephen A. Edwards All rights reserved

Multi-rate SDF System

� DAT-to-CD rate converter
� Converts a 44.1 kHz sampling rate to 48 kHz

1 1 2 3 2 7 8 7 5 1

Upsampler Downsampler

6

Copyright © 2001 Stephen A. Edwards All rights reserved

Delays

� Kahn processe s often have an initialization phase
� SDF doesn’t allow this because rates are not always

constant
� Alternative: an SDF system may start wi th tokens in

its buffers
� These behave like delays (signal-processing)
� Delays are sometimes necessary to avoid deadlock

Copyright © 2001 Stephen A. Edwards All rights reserved

Example SDF System

� FIR Fil ter (all single-rate)

dup

*c

dup

*c

+

dup

*c

+

dup

*c

+

*c

+

One-cycle delay
Duplicate

Constant
multiply

(filter
coefficient)

Adder

Copyright © 2001 Stephen A. Edwards All rights reserved

SDF Scheduling

� Schedule can be determined completely before the
system runs

� Two steps:

1. Establish relative execution rates by solv ing a syst em
of linear equations

2. Determine periodic schedule by simulating system
for a single round

Copyright © 2001 Stephen A. Edwards All rights reserved

SDF Scheduling

� Goal: a sequence of process firings that

� Runs each process at least once in pr oportion to its
rate

� Avoids underflow
• no process fired unless all tokens it consumes are

available

� Returns the number of tokens in each buffer to their
initial state

� Result: the schedule can be executed repeatedly
wi thout accumulating tokens in buffers

Copyright © 2001 Stephen A. Edwards All rights reserved

Calculating Rates

� Each arc imposes a constraint

b

d

1
2

3

2

c

a

3

41

3

2

1

6

3a – 2b = 0

4b – 3d = 0

b – 3c = 0

2c – a = 0

d – 2a = 0

Solution:

a = 2c

b = 3c

d = 4c

Copyright © 2001 Stephen A. Edwards All rights reserved

Calculating Rates

� Consistent systems have a one-dimensional solution
• Usually want the smallest integer solution

� Inconsistent sys tems only have the all -zeros solution

� Disconnected systems have two- or higher-
dimensional solutions

7

Copyright © 2001 Stephen A. Edwards All rights reserved

An Inconsistent System

� No way to execute it wi thout an unbounded
accumulation of tokens

� Only consistent solution is “ do nothing”

b

1

ca
1

32

1

1

a – c = 0

a – 2b = 0

3b – c = 0

3a – 2c = 0

Copyright © 2001 Stephen A. Edwards All rights reserved

An Underconstrained System

� Two or more unconnected pieces
� Relative rates between pieces undefined

ba
1 1

dc
3 2

a – b = 0

3c – 2d = 0

Copyright © 2001 Stephen A. Edwards All rights reserved

Consistent Rates Not Enough

� A consistent system wi th no schedule
� Rates do not avoid deadlock

� Solution here: add a delay on one of the arcs

ba
1 1

1 1

Copyright © 2001 Stephen A. Edwards All rights reserved

SDF Scheduling

� Fundamental SDF Scheduling Theorem:

If rates can be establi shed, any scheduling
algorithm that avoids buffer underflow will

produce a correct schedule if it exists

Copyright © 2001 Stephen A. Edwards All rights reserved

Scheduling Example

� Theorem guarantees any valid simulation will
produce a schedule

b

d

1
2

3

2

c

a

3

41

3

2

1

6

a=2 b=3 c=1 d=4

Possible schedules:

BBBCDDDDAA

BDBDBCADDA

BBDDBDDCAA

… many more

BC … is not valid

Copyright © 2001 Stephen A. Edwards All rights reserved

Scheduling Choices

� SDF Scheduling Theorem guarantees a schedule will
be found if it exists

� Systems often have many possible schedules

� How can we use this flexibili ty?
• Reduced code size
• Reduced buffer sizes

8

Copyright © 2001 Stephen A. Edwards All rights reserved

SDF Code Generation

� Often done with prewritten blocks

� For traditional DSP, handwritten implementation of
large functions (e.g., FFT)

� One copy of each block’s code made for each
appearance in the schedule

• I.e., no function call s

Copyright © 2001 Stephen A. Edwards All rights reserved

Code Generation

� In this simple-minded approach, the schedule

BBBCDDDDAA

would produce code like
B;
B;
C;
D;
D;
D;
D;
A;
A;

Copyright © 2001 Stephen A. Edwards All rights reserved

Looped Code Generation

� Obvious improvement: use loops

� Rewrite the schedule in “ looped” form:

(3 B) C (4 D) (2 A)

� Generated code becomes

for (i = 0 ; i < 3; i++) B;

C;

for (i = 0 ; i < 4 ; i++) D;

for (i = 0 ; i < 2 ; i++) A;
Copyright © 2001 Stephen A. Edwards All rights reserved

Single-Appearance Schedules

� Often possible to choose a looped sche dule in which
each block appears exactly once

� Leads to efficient block-structured code
• Only requires one copy of each b lock’s code

� Does not always exist

� Often requires more buffer space than other
schedules

Copyright © 2001 Stephen A. Edwards All rights reserved

Finding Sing le-Appearance
Schedules
� Always exist for acyclic graphs

• Blocks appear in topological order

� For SCCs, look at number of
tokens that pass through arc in
each period (follows from balance
equations)

� If there is at least that much delay,
the arc does not impose ordering
constraints

� Idea: no possibili ty of underflow

b

3

2

a

6

a=2 b=3

6 tokens cross the arc

delay of 6 is enough

Copyright © 2001 Stephen A. Edwards All rights reserved

Finding Sing le-Appearance
Schedules
� Recursive strongly-connected component

decomposition

� Decompose into SCCs
� Remove non-constraining arcs
� Recurse if possible

• Removing arcs may break the SCC into two o r more

9

Copyright © 2001 Stephen A. Edwards All rights reserved

Minimum-Memory Schedules

� Another possible objective

� Often increases code size (block-generated code)

� Static scheduling makes it possible to exactly predict
memory requirements

� Simultaneously improving code size, memory
requirements, sharing buffers, etc. remain open
research problems

Copyright © 2001 Stephen A. Edwards All rights reserved

Cyclo-static Dataflow

� SDF suffers from requir ing each process to produce
and consume all tokens in a single fir ing

� Tends to lead to larger buffer requirements
� Example: downsampler

� Don’t really need to store 8 tokens in the buffer
� This process simply discards 7 of them, anyway

8 1

Copyright © 2001 Stephen A. Edwards All rights reserved

Cyclo-static Dataflow

� Alternative: have periodic, binary firings

� Semantics: first firing: consume 1, produce 1
� Second through eighth firing: consume 1, produce 0

{1,1,1,1,1,1,1,1} {1,0,0,0,0,0,0,0}

Copyright © 2001 Stephen A. Edwards All rights reserved

Cyclo-Static Dataflow

� Scheduling is much like SDF
� Balance equations establish relative rates as before
� Any scheduler that avoids underflow will produce a

schedule if one exists
� Advantage: even more sche dule flexib ili ty
� Makes it easier to avoid large buffers
� Especially good for hardware implementation:

• Hardware likes moving sing le values at a time

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary of Dataflow

� Processes communicating exclusively through FIFOs

� Kahn process n etworks
• Blocking read, nonblocking write
• Deterministic
• Hard to schedule
• Parks’ algorithm requires deadlock detection, dynamic

buffer-size adjustment

Copyright © 2001 Stephen A. Edwards All rights reserved

Summary of Dataflow

� Synchronous Dataflo w (SDF)
� Firing rules:

• Fixed token consumption/production

� Can be scheduled statically
• Solve balance equations to establish rates
• Any correct simulation will produce a schedu le if one

exists

� Looped schedules
• For code generation: implies loops in generated code
• Recursive SCC Decomposition

� CSDF: breaks firing rules into smaller pieces
• Scheduling prob lem largely the same

