
1

Copyright © 2001 Stephen A. Edwards All rights reserved

Assembly Languages I

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards All rights reserved

Last Time
� Languages
� Syntax: what’s in the language
� Semantics: what the language means
� Model: what the language manipulates
� Specification asks for something
� Modeling asks what something will do
� Concurrency
� Nondeterminism

Copyright © 2001 Stephen A. Edwards All rights reserved

Assembly Languages
� One step up from machine

language

� Originally a more user-friendly
way to program

� Now mostly a compiler target

� Model of computation: stored
program computer

ENIAC, 1946

17k tubes, 5kHz

Copyright © 2001 Stephen A. Edwards All rights reserved

Assembly Language Model

…

add r1,r2

sub r2,r3

cmp r3,r4

bne I1

sub r4,1

I1: jmp I3

…

ALU
PC

Registers
Memory

Copyright © 2001 Stephen A. Edwards All rights reserved

Assembly Language Instructions
� Built from two pieces

Add R1, R3, 3

Opcode

What to do with
the data

(ALU operation)

Operands

Where to get
data and put
the results

Copyright © 2001 Stephen A. Edwards All rights reserved

Types of Opcodes
� Arithmetic, logical

• add, sub, mult
• and, or
• Cmp

� Memory load/store
• ld, st

� Control transfer
• jmp
• bne

� Complex
• movs

2

Copyright © 2001 Stephen A. Edwards All rights reserved

Operands
� Each operand taken from a particular

addressing mode:
� Examples:

Register add r1, r2, r3

Immediate add r1, r2, 10

Indirect mov r1, (r2)

Offset mov r1, 10(r3)

PC Relative beq 100

� Reflect processor data pathways

Copyright © 2001 Stephen A. Edwards All rights reserved

Types of Assembly Languages
� Assembly language closely tied to processor

architecture
� At least four main types:

� CISC: Complex Instruction-Set Computer
� RISC: Reduced Instruction-Set Computer
� DSP: Digital Signal Processor
� VLIW: Very Long Instruction Word

Copyright © 2001 Stephen A. Edwards All rights reserved

CISC Assembly Language
� Developed when people wrote assembly language
� Complicated, often specialized instructions with

many effects

� Examples from x86 architecture
• String move
• Procedure enter, leave

� Many, complicated addressing modes

� So complicated, often executed by a little program
(microcode)

Copyright © 2001 Stephen A. Edwards All rights reserved

RISC Assembly Language
� Response to growing use of compilers
� Easier-to-target, uniform instruction sets
� “ Make the most common operations as fast as

possible”

� Load-store architecture:
• Arithmetic only performed on registers
• Memory load/store instructions for memory-register

transfers

� Designed to be pipelined

Copyright © 2001 Stephen A. Edwards All rights reserved

DSP Assembly Language
� Digital signal processors designed specifically for

signal processing algorithms
� Lots of regular arithmetic on vectors
� Often written by hand

� Irregular architectures to save power, area

� Substantial instruction-level parallelism

Copyright © 2001 Stephen A. Edwards All rights reserved

VLIW Assembly Language
� Response to growing desire for instruction-level

parallelism
� Using more transistors cheaper than running them

faster
� Many parallel ALUs
� Objective: keep them all busy all the time
� Heavily pipelined
� More regular instruction set
� Very difficult to program by hand
� Looks like parallel RISC instructions

3

Copyright © 2001 Stephen A. Edwards All rights reserved

Types of Assembly Languages

 CISC RISC DSP VLIW

Opcodes Many,
Complex

Few,
Simple

Few,
Complex

Few,
Simple

Registers Few,
Special

Many,
General

Few,
Special

Many,
General

Addressing
modes

Many Few Special Few

Instruction-
level
Parallelism

None None Restricted Plenty

Copyright © 2001 Stephen A. Edwards All rights reserved

Gratuitous Picture
� Woolworth building
� Cass Gilbert, 1913

� Application of the Gothic
style to a 792’ skyscraper

� Tallest building in the
world when it was
constructed

� Downtown: near City Hall

Copyright © 2001 Stephen A. Edwards All rights reserved

Example: Euclid’s Algorithm
� In C:

���������	��
�������������������
�
���������
��� ���	 !
"
	�$#��&%!���(')#"*+� �
�"#,�-�
�.#!�/�

0
�� ���1����"�2�

0

Remainder operation

Two integer parameters

Data transfer
Non-zero test

One local variable

Copyright © 2001 Stephen A. Edwards All rights reserved

i386 Programmer’s Model

eax

ebx

ecx

edx

esi

edi

ebp

esp

31 0

Mostly
general-
purpose
registers

Source index

Destination index

Base pointer

Stack pointer

cs

15 0

Code

ds Data

ss Stack

es Extra

fs Data

gs Data

Segment
Registers:

Added during
address
computation

eflags

eip

Status word

Instruction Pointer (PC)

Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid’s Algorithm on the i386

.file "euclid.c"

.version " 01.01"
gcc2_compiled.:
.text

.align 4
.globl gcd

.type gcd,@function
gcd:

pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%eax
movl 12(%ebp),%ecx
jmp .L6
.p2align 4,,7

Boilerplate
Assembler directives start with “.”
“This will be executable code”

“Start on a 16-byte boundary”

“gcd is a linker-visible label”

Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid’s Algorithm on the i386

.file "euclid.c"

.version " 01.01"
gcc2_compiled.:
.text

.align 4
.globl gcd

.type gcd,@function
gcd:

pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%eax
movl 12(%ebp),%ecx
jmp .L6

return 0(%esp)

m 4(%esp)

n 8(%esp)

%esp

Stack before call

old epb 0(%ebp)

return 4(%ebp)

m 8(%ebp)

n 12(%ebp)

%ebp

Stack after entry

%esp old ebx -4(%ebp)

4

Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid’s Algorithm on the i386

jmp .L6
.p2align 4,,7

.L4:
movl %ecx,%eax
movl %ebx,%ecx

.L6:
cltd
idivl %ecx
movl %edx,%ebx
testl %edx,%edx
jne .L4
movl %ecx,%eax
movl -4(%ebp),%ebx
leave
ret

“Jump to local label .L6”
“Skip as many as 7 bytes to
start on a 16-byte boundary”

“Sign-extend %eax to %edx:%eax”

“Compute %edx:%eax ÷ %ecx:
quotient in %eax, remainder in %edx”

Register assignments:
%eax m
%ebx r
%ecx n

���������	����
���������� �������
�������
����
��

�

 ���� !
 ���"�

Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid’s Algorithm on the i386

jmp .L6
.p2align 4,,7

.L4:
movl %ecx,%eax
movl %ebx,%ecx

.L6:
cltd
idivl %ecx
movl %edx,%ebx
testl %edx,%edx
jne .L4
movl %ecx,%eax
movl -4(%ebp),%ebx
leave
ret

“m = n”

“Branch back to .L4 if the zero flag is
clear, I.e., the last arithmetic
operation did not produce zero”

“n = r”

“compute AND of %edx and %edx,
update the status word, discard the
result”

���������	����
���������� �������
�������
����
��

�

 ���� !
 ���"�

Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid’s Algorithm on the i386

jmp .L6
.p2align 4,,7

.L4:
movl %ecx,%eax
movl %ebx,%ecx

.L6:
cltd
idivl %ecx
movl %edx,%ebx
testl %edx,%edx
jne .L4
movl %ecx,%eax
movl -4(%ebp),%ebx
leave
ret

“move %ebp to %esp and
pop %ebp from the stack”

“Pop a return address from the
stack and branch to it”

“return n” (caller expects value in %eax)

old epb 0(%ebp)

return 4(%ebp)

m 8(%ebp)

n 12(%ebp)

%ebp

Stack before exit

%esp old ebx -4(%ebp)

Copyright © 2001 Stephen A. Edwards All rights reserved

Another Gratuitous Picture
� Types of Bridges

Truss

(Forth Bridge, Scotland)

Suspension

(Golden Gate Bridge,
California)

Cable-stayed

(Higashi Kobe,
Japan)

Copyright © 2001 Stephen A. Edwards All rights reserved

SPARC Programmer’s Model

r7

r1

r0

31 0

…

r14/o6

r8/o0…

r23/l7

r16/l0…

r31/i7

r24/i0…

31 0

7 global
registers

R0 is always 0

8 output
registers

8 local
registers

8 input registers

r15/o7

Stack Pointer

PSW

PC

nPC

Program Status Word

Program Counter

Next Program Counter

Return Address

r30/i6 Frame Pointer

Copyright © 2001 Stephen A. Edwards All rights reserved

SPARC Register Windows

…r24/i0

r31/i7

…r16/l0

r23/l7

…r8/o0

r15/o7

…r24/i0

r31/i7

…r16/l0

r23/l7

…r8/o0

r15/o7

…r24/i0

r31/i7

…r16/l0

r23/l7

…r8/o0

r15/o7
� The output registers of the

calling procedure become
the inputs to the called
procedure

� The global registers remain
unchanged

� The local registers are not
visible across procedures

5

Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid’s Algorithm on the SPARC

.file " euclid.c"
gcc2_compiled.:

.global .rem
.section " .text"

.align 4

.global gcd

.type gcd,#function

.proc 04
gcd:

save %sp, -112, %sp

mov %i0, %o1
b .LL3
mov %i1, %i0

Boilerplate
Assembler directives start with “.”
“This will be executable code”

“gcd is a linker-visible label”

Copyright © 2001 Stephen A. Edwards All rights reserved

Pipelining

Fetch Decode Execute Write

Fetch Decode

Fetch Decode Execute Write

Fetch Decode Execute Write

Fetch Decode Execute Write

Fetch Decode Execute Write

Fetch Decode Execute Write

Fetch Decode Execute Write

None

Pipelined

Superscalar

Execute

Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid’s Algorithm on the SPARC

.file " euclid.c"
gcc2_compiled.:

.global .rem
.section " .text"

.align 4

.global gcd

.type gcd,#function

.proc 04
gcd:

save %sp, -112, %sp

mov %i0, %o1
b .LL3
mov %i1, %i0

“Advance the register windows.
Allocate space on the stack.”

“Move argument 0 (m) into %o1”

“Branch to .LL3 after executing
the next instruction”

The SPARC doesn’t have a mov instruction:
the assembler replaces this with

or %g0, %i1, %i0

Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid’s Algorithm on the SPARC

mov %i0, %o1
b .LL3
mov %i1, %i0

.LL5:
mov %o0, %i0

.LL3:
mov %o1, %o0
call .rem, 0
mov %i0, %o1
cmp %o0, 0
bne .LL5
mov %i0, %o1
ret
restore

“Compute the remainder of
m ÷ n (result in %o0)”

Call is also delayed

Register assignments:
m %o1
r %o0
n %i0

���������	����
 ���������� �������
�������
����
��

�

 ���� !
���� �

Copyright © 2001 Stephen A. Edwards All rights reserved

Euclid’s Algorithm on the SPARC

mov %i0, %o1
b .LL3
mov %i1, %i0

.LL5:
mov %o0, %i0

.LL3:
mov %o1, %o0
call .rem, 0
mov %i0, %o1
cmp %o0, 0
bne .LL5
mov %i0, %o1
ret
restore

Register assignments:
m %o1
r %o0
n %i0

“m = n” (executed even if
loop terminates)

“n = r”

Inverse of save:
return to previous
register window

“Branch back to caller”
SPARC has no ret: this is
jmp %i7 + 8

� ������� ����
 ����� ����� �������
�������
���
��

�

����� �
 ��� �

