
PITCH ACCENT PREDICTION USING ENSEMBLE MACHINE 
LEARNING 

Xuejing Sun 

Department of Communication Sciences and Disorders, Northwestern University  
2299 N. Campus Dr., Evanston, IL 60208, USA 

sunxj@northwestern.edu 
 

ABSTRACT 

In this study, we applied ensemble machine learning to predict 
pitch accents. With decision tree as the baseline algorithm, two 
popular ensemble learning methods, bagging and boosting, 
were evaluated across different experiment conditions: using 
acoustic features only, using text-based features only; using 
both acoustic and text-based features. F0 related acoustic 
features are derived from underlying pitch targets. Models of 
four ToBI pitch accent types (High, Down-stepped high, Low, 
and Unaccented) are built at the syllable level. Results showed 
that in all experiments improved performance was achieved by 
ensemble learning. The best result was obtained in the third 
task, in which the overall correct rate increases from 84.26% to 
87.17%. 

1. INTRODUCTION 

Prosodic events embody rich linguistic information that is 
critical for speech communication process. Many systems have 
been proposed to describe various prosodic patterns using a 
finite set of symbols (e.g. ToBI [9]). Automatic prediction of 
these symbols with high accuracy could therefore be useful in 
text-to-speech, automatic speech recognition, and corpus 
development. Depending on the application, prosodic event 
recognition systems can utilize acoustic information, text 
information, or from both.   

A variety of algorithms have been investigated for 
predicting prosodic patterns, including Hidden Markov Model 
(HMM) (e.g.[2]), neural network (e.g. [6]), dynamical system 
[7], and decision trees (e.g. [5]). In the present paper, we 
explore the use of ensemble machine learning technique to 
predict ToBI [9] style pitch accents. For classification 
problems, ensemble learning algorithms construct a set of 
classifiers and then classify new data by taking a (weighted) 
vote of their predictions [3]. Lately, this approach has received 
much attention, and has been shown to be superior to single- 
classifier systems in many real world problems. Among various 
ensemble learning methods, bagging [1] and boosting [4] are 
probably the two most popular ones due to their effectiveness 
and ease of implementation.  

In general, ensemble learning methods are algorithm- 
independent, and impose no restrictions on the choice of the 
basic learner. In this work, we chose classification and 
regression trees (CART) as our basic learning algorithm 
because it features: (1) faster training and testing compared 
with other algorithms (e.g., neural networks); (2) less hand-

tuning of the parameters; (3) human-readable results; (4) easy 
application of the trained models to existing systems.  

The paper is organized as follows. First we describe 
ensemble learning methods, specifically bagging and boosting. 
Then we present several experiments on pitch accent prediction 
with CART, bagging, and boosting. Finally, we discuss the 
results and present concluding remarks. 

2. ENSEMBLE MACHINE LEARNING 

2.1. Bagging 

Bagging (Bootstrap Aggregation) [1] generates multiple 
classifiers by manipulating the training set. Each time a 
different training set is presented to the learning machine. The 
new training set is constructed by drawing samples from the 
original training set randomly with replacement. The final 
results are obtained usually by voting for classification or taking 
average for regression. For bagging to be successful, the 
learning machine should be unstable, that is, a small change in 
the training set would result in large changes in the training 
output. Decision tree and neural network are typical unstable 
learners.  

2.2. Boosting 

Boosting, specifically AdaBoost [4], also combines multiple 
classifiers by presenting different training set to the base 
learner. However, instead of using random selection as in 
bagging, the construction of a new training set depends on a 
weight distribution, which is updated over iterations. Initially all 
the training samples have the same weight. After each iteration, 
the weight distribution is updated such that misclassified 
samples have more weight. With the updated weight 
distribution, there are two ways of generating new training 
samples. In reweighting, the original training set is used, but 
each sample is associated with a new weight. This method is 
applicable to the learners that can handle weighted samples. In 
resampling, the new training set is constructed according to the 
weight distribution, where samples with more weights are more 
likely to be selected. Although it might be suboptimal, we used 
resampling in this work as an initial attempt, since it is easier to 
implement. Finally, in predicting a new sample, a weighted 
combination of multiple classifiers are used. Figure 1 illustrates 
the AdaBoost.M1 algorithm described by Freund and Schapire 
[4], an extension of the original boosting algorithm for multi-
class problems. 
 
 



Input: sequence of N training examples ((x1, y1), … , (xN, yN)) 
Initialize weight distribution Wi=1/N, where i=1,…, N. 
Do for t=1, … , T where T specifies the total number of 
iterations 

1. Train classifier using weight distribution Wi 
2. Get back a hypothesis ht : X � Y 
3. Calculate the error of ht:  
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Figure 1: Boosting algorithm AdaBoost.M1  
 

2.3. Bias and variance 

Why does ensemble learning work? It has been shown that the 
prediction error of a classifier can be decomposed into two 
components: bias and variance [1]. Ensemble methods like 
bagging can reduce the amount of variance. Boosting can 
reduce both bias and variance. Individual decision trees have 
high variance in terms of generalization accuracy. Thus, 
applying ensemble learning on decision trees can improve 
performance by lowering variance.  

3. EXPERIMENTS 

3.1. The corpus 

Training and testing data were taken from Boston University 
Radio Speech Corpus, speaker F2B. The database, consisting of 
about 40 minutes speech read by a female professional 
announcer, is labeled using the ToBI [9] system. Similar to 
Ross and Ostendorf [7], the ToBI pitch accent labels were 
grouped into four types: High, Low, Down-stepped high, and 
Unaccented. The labels were aligned with syllables. The 
distribution of pitch accent types in the database is shown in 
Table 1. The database also provides text information, such as 
part-of-speech, and acoustic information such as segment 
duration. F0 values were determined by the SHRP 
algorithm[11]. The data set was split into training and testing 
sets with approximately a 4:1 ratio.  
 

Pitch accent type  
Unaccented High Downstep Low 

Training set 7804 2717 853 151 
Testing set 1929 677 211 35 

Table 1: Pitch accent distribution in the database 

3.2. Building models 

In this work, we conducted three experiments to evaluate 
ensemble learning: (1) pitch accent prediction using only 
acoustic features; (2) pitch accent prediction using only text 
features; (3) pitch accent prediction using both acoustic and text 
features. Note that, similar to [7][8], we predicted pitch accent 
at syllable level, which assumes the syllable boundaries are 
known. In each experiment, we built models using single 
CART, bagging with CART, and AdaBoost with CART. The 
number of iterations for bagging and boosting was limited to 
50. Guided by the theory of bias and variance decomposition, 
we applied ensemble learning as follows: Overtrain CART to 
generate a tree with low bias by using a small stop value, which 
refers to the minimum number of samples in the leaf nodes; Use 
bagging or boosting to reduce variance. “WAGON” [12] 
program, an implementation of standard CART, was used to 
build classification trees 

3.2.1. Pitch accent prediction using acoustic features 

Many acoustic features are thought to be correlates of pitch 
accent. Only fundamental frequency (F0), energy, and 
segmental duration were considered in this study. The F0 
related features were derived from the so-called underlying 
pitch targets [13]. Below we describe the pitch target analysis 
procedure briefly, and the details can be found in [10]. 

First, for each syllable we define  
battT +=)(                   (1) 

battty ++−= )exp()( λβ                  (2) 

where )(⋅T  represents the underlying pitch target, and )(⋅y  
represents the surface F0 contour. Coefficient � is a scaling 
parameter, and its value is the distance between F0 contour and 
the underlying pitch target when t = 0. Parameter � is a positive 
number representing the rate of decay of the exponential part. 
Parameters a and b are the slope and intercept of the underlying 
pitch target.  

Next, let (t0, y0) denote the first point on the F0 contour, 
and let (t1, y1) denote a point where underlying pitch target has 
been approached, then we have: 

11110 )exp()()( atyattatyyty −++−+−= λ       (3) 

The parameters of the model are estimated by nonlinear 
regression. When nonlinear regression fails, linear regression is 
performed. In practice, for (t0, y0), we use an average of the 
first two F0 values in estimation because the first point can be 
aberrant. For (t1, y1), we use the point in the middle of a 
segment, which seems to work best. 

In constructing the feature set, we extracted two parameters 
from each pitch target, middle F0 value (MidF0) and the slope. 
We also computed the change of F0 and slope between pitch 
targets, i.e. ∆ MidF0 and ∆ Slope. Together with syllable 
energy and duration, the feature set contains: 

� MidF0 of the current, previous, and next pitch target 
� ∆ MidF0 with respect to the previous and next pitch 

target 
� Slope of the current, previous, and next pitch target 
� ∆ Slope with respect to the previous and next pitch 

target 
� Syllable duration 
� Syllable energy 



Stop value 30 was chosen for single CART since it yielded low 
error on the testing set. For bagging and boosting, stop value 5 
was used in order to generate overtrained trees with low bias.  

3.2.2. Pitch accent prediction using text features 

Predicting pitch accent from text has been studied extensive in 
the past due to its critical role in text-to-speech systems. It has 
been shown that many factors can affect pitch accent placement. 
In this work, however, we limited our choices to those that 
could be derived from unrestricted text without much difficulty. 
The feature set contains: 

� Vowel identity 
� Syllable stress of the previous and next syllable 
� The position of the current, previous, and next syllable 

in a word 
� Number of syllables in the current and previous word 
� Part-of-speech of the previous and next words 
� A composite feature made up by part-of-speech and 

stress for the current syllable 
� Number of words from the beginning of the sentence 

and to the end of the sentence 
The stop value was 20 for single CART, and 5 for bagging. For 
boosting, however, stop value 20 was used, which gave better 
results than a smaller value.  

3.2.3. Prediction with both acoustic and text information 

In this experiment, we combined the acoustic and text features 
listed in the last two sections to predict pitch accent. The stop 
value was 20 for single CART, and 5 for both bagging and 
boosting. 

3.3. Results 

To facilitate a quick comparison, Table 2 lists the overall 
correct rate regardless of pitch accent type for all the 
experiment conditions. Detailed evaluation results in the form 
of confusion matrix are shown in Tables 3-11. In the tables, 
each column represents the prediction results for each pitch 
accent type with percentage and frequency count. We adopted 
the same evaluation method used by Ross and Ostendorf [7][8] 
since those studies and the present work are very similar with 
respect to the experiment configuration.  
 

 Overall correct rate (%) 
Acoustic-CART 82.89 

Acoustic - Bagging with CART 84.71 
Acoustic - AdaBoost with CART 84.71 

Text - CART 80.47 
Text - Bagging with CART 80.64 

Text - AdaBoost with CART 80.50 
Both - CART 84.26 

Both - Bagging CART 86.89 
Both - AdaBoost with CART 87.17 

Table 2: The overall correct rate of CART, bagging, and 
AdaBoost  

It can be seen from Table 1 that ensemble learning can indeed 
yield favorable results than a single decision tree. The 
improvement is most significant in the third task, in which both 
acoustic and text features were used. This implies that when 
more input features are available, their usefulness might be 
better exploited by combining multiple machines. In the second 
task, the improvement seems to be trivial. One of the possible 

reasons could be that the text-based input features used in the 
second task were insufficient to predict pitch accent. This 
insufficiency leads to that some patterns are extremely difficult 
to learn, which could not be remedied even by combining 
multiple trees. Therefore, better feature sets are needed in future 
studies. For example, since we predict pitch accent at syllable 
level, we may need to convert part-of-speech from a word-level 
feature to a syllable-level feature.  

It is usually difficult to compare results obtained from 
different studies directly, because the corpus, prosodic labeling 
scheme, input feature set, and many other important 
experimental configurations could be different. Nevertheless, 
the present work shares many similarities with [7][8], and 
hence the results may be comparable. In Ross and 
Ostendorf[7], a dynamical system is developed to predict pitch 
accent using acoustic features and 84.61% (calculated from 
Table 1 in their paper) overall correct rate is achieved. In this 
work, both bagging and boosting yield 84.71% overall correct 
rate. In [8], decision trees combined with Markov sequence 
models are used to predict pitch accent using text-based 
features and 80.17% (calculated from Table VI in their paper) 
overall correct rate is obtained. Correspondingly, in the second 
experiment of the present study, bagging and boosting achieve 
80.64% and 80.50% overall correct rate, respectively. Note that 
simpler feature sets were used in this work. Moreover, our 
system seems to be less complex and easier to implement.   

It has been shown by many studies that boosting usually 
performs better than bagging (e.g. [3]). The results of bagging 
and boosting in this work, however, seem to be quite similar. 
During the experimentation, we noticed that bagging seems to 
be faster in reducing error rate. In other words, to achieve 
similar performance, bagging needs less iterations or fewer 
classifiers. Additionally, the boosting algorithm is essentially 
sequential, whereas bagging can be executed in parallel. Thus, 
to build a prosodic event recognition system, bagging seems to 
be a better choice to begin with. It should be noted that our 
boosting implementation is the simplest one for multi-class 
problems. We expect better results be achieved by using more 
sophisticated versions, such as AdaBoost.M2 [4].  

4. CONCLUSIONS 

In summary, we have described the application of ensemble 
machine learning to pitch accent prediction problem. CART, 
bagging with CART, and boosting with CART were evaluated 
under three experiment conditions: acoustic feature only; text-
based feature only; both acoustic and text features. Novel 
acoustic features derived from underlying pitch targets were 
developed. In all three experiments, ensemble learning yields 
more favorable results than single CART. This is encouraging 
because it indicates that by combining multiple decision trees 
we can consistently improve system performance without 
adding much complexity. We are quite optimistic that even 
better results could be obtained with more sophisticated input 
features and ensemble learning algorithms, but those 
experiments remain to be done. 
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Hand-labeled Recognized 

Unaccented High Downstep Low 
Unaccented 93.73%(1808) 17.87%(121) 38.86%(82) 91.43%(32) 

High 5.29%(102) 77.55%(525)  46.45%(98) 8.57%(3) 
Downstep 0.98%(19) 4.58%(31) 14.69%(31) 0%(0) 

Low 0%(0) 0%(0) 0%(0) 0%(0) 

Table 3: Results of pitch accent recognition using 
acoustic features with single CART 

Hand-labeled Recognized 
Unaccented High Downstep Low 

Unaccented 95.08% (1834) 15.51%(105) 37.91%(80) 88.57%(31) 
High 4.35%(84) 82.42%(558)  50.71%(107) 8.57%(3) 

Downstep 0.52%(10) 2.07%(14) 10.90%(23) 0%(0) 
Low 0.05%(1) 0%(0) 0.47%(1) 2.86%(1) 

Table 4: Results of pitch accent recognition using 
acoustic features with bagging CART 

Hand-labeled Recognized 
Unaccented High Downstep Low 

Unaccented 94.82%(1829) 13.59%(92) 31.28%(66) 85.71%(30) 
High 4.56%(88) 80.35%(544)  48.82%(103) 2.86%(1) 

Downstep 0.62%(12) 5.76%(39) 19.43%(41) 5.71%(2) 
Low 0%(0) 0.30%(2) 0.47%(1) 5.71%(2) 

Table 5: Results of pitch accent recognition using 
acoustic features with AdaBoost CART  

Hand-labeled Recognized 
Unaccented High Downstep Low 

Unaccented 90.82%(1755) 19.79%(134) 24.64%(52) 17.14%(6) 
High 7.47%(144) 75.48%(511)  60.19%(127) 77.14%(27) 

Downstep 1.71%(33) 4.73%(32) 15.17%(32) 5.71%(2) 
Low 0%(0) 0%(0) 0%(0) 0%(0) 

Table 6: Results of pitch accent prediction using text 
features with single CART 

Hand-labeled Recognized 
Unaccented High Downstep Low 

Unaccented 92.43%(1783) 24.08%(163) 26.07%(55) 20%(7) 
High 6.22%(120) 71.20%(482) 57.35%(121) 71.43%(25) 

Downstep 1.35%(26) 4.73%(32) 16.59%(35) 8.57%(3) 
Low 0%(0) 0%(0) 0%(0) 0%(0) 

Table 7: Results of pitch accent prediction using text 
features with bagging CART 

Hand-labeled Recognized 
Unaccented High Downstep Low 

Unaccented 91.45%(1783) 21.57%(163) 26.07%(55) 22.86%(7) 
High 6.58%(120) 72.53%(482) 54.03%(121) 71.43%(25) 

Downstep 1.97%(26) 5.91%(32) 19.43%(35) 5.71%(3) 
Low 0%(0) 0%(0) 0.47%(1) 0%(0) 

Table 8: Results of pitch accent prediction using text 
features with AdaBoost CART 

Hand-labeled Recognized 
Unaccented High Downstep Low 

Unaccented 94.56%(1824) 14.03%(95) 27.96%(59) 74.29%(26) 
High 4.30%(83) 78.43%(531) 49.29%(104) 20%(7) 

Downstep 1.09%(21) 7.39%(50) 22.27%(47) 2.86%(1) 
Low 0.05%(1) 0.15%(1) 0.47%(1) 2.86%(1) 

Table 9: Results of pitch accent prediction using both 
acoustic and text features with single CART 

Hand-labeled Recognized 
Unaccented High Downstep Low 

Unaccented 96.84%(1868) 11.96%(81) 28.44%(60) 85.71%(30) 
High 2.85%(55) 83.90%(568) 52.13%(110) 5.71%(2) 

Downstep 0.31%(6) 4.14%(28) 19.43%(41) 5.71%(2) 
Low 0%(0) 0%(0) 0%(0) 2.86%(1) 

Table 10: Results of pitch accent prediction using both 
acoustic and text features with bagging CART 

Hand-labeled Recognized 
Unaccented High Downstep Low 

Unaccented 96.79%(1867) 9.31%(63) 24.17%(51) 85.71%(30) 
High 2.54%(49) 83.46%(565) 50.24%(106) 5.71%(2) 

Downstep 0.47%(9) 7.09%(48) 24.17%(51) 0%(0) 
Low 0.21%(4) 0.15%(1) 1.42%(3) 8.57%(3) 

Table 11: Results of pitch accent prediction using both 
acoustic and text features with AdaBoost CART 


