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Abstract

This paper presents trainable methods for extracting principal content words from voice-
mail messages. The short text summaries generated are suitable for mobile messaging
applications. The system uses a set of classifiers to identify the summary words, with each
word being identified by a vector of lexical and prosodic features. We use an ROC-based
algorithm, Parcel, to select input features (and classifiers). We have performed a series of
objective and subjective evaluations using unseen data from two different speech recogni-
tion systems, as well as human transcriptions of voicemail speech.
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1 Introduction

The increased proliferation of audio content has recently motivated several projects in the
field of extracting and accessing information from audio archives. Some notable successes
have been spoken document retrieval (SDR) and named entity (NE) extraction. A number
of SDR systems, operating on an archive of broadcast news, were evaluated as part of
the Text REtrieval Conference (TREC) from 1997-2000, giving the important result that
retrieval performance on ASR output was similar to that obtained using human-generated
reference transcripts, with little or no dependence on transcription errors (Garofolo et al.,
2001). This is not the case for all tasks which involve accessing information in spoken
audio: it has been observed that the accuracy of NE identification is strongly correlated with
the number of transcription errors (Kubala et al., 1998; Gotoh and Renals, 2000; Palmer
et al., 2000).

This paper is about the generation of short text summaries ofvoicemail messages. Au-
tomatic summarization may be defined as the distillation of the most important information
from a source, producing an abridged version, given a particular user and task (Mani and
Maybury, 1999). The majority of research in this area has been concerned with the summa-
rization of written text, reviewed by Mani (2001). The growth of information and commu-
nication systems that deal with audio and visual media has stimulated the need to expand
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summarization systems from text to multimedia. For example, the existence of automatic
speech summarizers would enable many practical applications such as the construction of
automatically annotated audio archives, integrated mixedmedia communication systems
and innovative multimodal interfaces.

A complete speech summarization system demands both spokenlanguage understand-
ing and language generation, and is well beyond the current state-of-the-art. However,
it is possible to use simpler techniques to produce summaries that are of some use. The
earliest reported work in speech summarization concerned the generation of crude sum-
maries based on acoustic emphasis (Chen and Withgott, 1992)and the classification of
parts of dialogue (Rohlicek et al., 1992). More recently, with the advent of large vocabu-
lary speaker-independent continuous ASR, speech summarization research has focused on
the application of text-based methods to ASR output (Valenza et al., 1999; Hori and Fu-
rui, 2000; Zechner, 2001). At the same time, researchers have begun to combine prosodic,
acoustic and language information in an attempt to achieve results that are more robust than
those of single sources. Application domains include identification of speech acts (Warnke
et al., 1997), sentence and topic segmentation (Hirschbergand Nakatani, 1998; Shriberg
et al., 2000) and NE identification (Hakkani-Tür et al., 1999).

Voicemail involves a conversational interaction between ahuman and a machine, with
no feedback from the machine. Voicemail systems can record and store voice messages
digitally while the user is away or simply unavailable and can be reviewed upon the user’s
return. Alternatively, the user can call in on a touch tone phone and review stored messages.
Voicemail messages are typically short, conveying the reason for the call, the information
that the caller requires from the voicemail recipient and a return telephone number.

The slow, sequential nature of speech makes it hard to find important information
quickly. Although, several advances in voicemail retrieval schemes related to pause re-
moval for faster playback and efficient audio coding have been proposed (Kato, 1994; Pak-
soy et al., 1997), the limitations of the old paradigm remain. Users of voicemail systems
on the receipt of a notification have to call their voicemail system and download/listen to
their actual/compressed messages. The ScanMail system (Hirschberg et al., 2001) allows
users to browse and search the full message transcription oftheir voicemail messages by
content through a graphical user interface. However, voicemail users are likely to want to
receive their messages on handheld devices – especially formessages taken by voicemail
systems other than the one provided by the network operator,e.g. home or corporate voice-
mail system. In general, there is a lot of time sensitive content in voicemail, but which the
user cannot access either because it is not known when it becomes available (i.e. lack of
notification mechanism), or because the notification refersonly to changes in status (e.g.
arrival of new messages) and not to actual content.

We have proposed an efficient voicemail retrieval scheme (Koumpis et al., 2001a)
which ‘pushes’ text summaries of incoming messages to the handheld device directly from
a server without an explicit user request. Figure 1 comparesthe two approaches for access-
ing voicemail content. In our architecture the spoken messages collected by the voicemail
system are forwarded to the content server where they are automatically transcribed and
summarized. There is no restriction on the location of the voicemail system, so access to
answering services other than the one provided by the network operator is possible. The
message initiator contacts the gateway over the Internet and delivers the messages. The
gateway examines the message and performs the required encoding and transformation.
The messages are then transmitted hop-by-hop in the mobile network to the mobile client.
The message initiator is then notified by the gateway about the final outcome of the opera-
tion.

Automatically produced text summaries from voicemail messages may serve multiple
goals such as the rapid digest of content, and the indexing ofmessages with the intention
of retrieving the original recordings when more information is needed. Voicemail summa-
rization has several features that differentiate it from conventional text summarization.
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Figure 1: ‘Pull’ and ‘push’ service models for accessing voicemail. The ‘pull’ model
employs a conventional request/response approach similarto that of the web – a user enters
a URL (the request) which is sent to a server, and the server answers by sending a web
page (the response) – while in the ‘push’ model content is delivered to the handheld device
without a specific user request.

1. Typical voicemail messages are short: the average duration of a voicemail message
is 40s in the work reported here.

2. The summaries are extremely terse, in this case designed to fit into a 140 character
text message and therefore coherence and document flow (style) are less important
than content.

3. Only one speaker speaks at a time and due to the relatively short message length,
segmentation is unnecessary (in contrast to spoken dialogues or broadcast news).

4. Since the voicemail messages are transcribed by an automatic speech recognition
(ASR) system, a significant word error rate (WER) must be assumed.

A number of techniques have been proposed to extract key pieces of information from
voicemail messages. Huang et al. (2001) discuss three approaches to extract the identity
and phone number of the caller: 200 hand-crafted rules; grammatical inference of subse-
quential transducers; and log-linear classifiers using a set of 10 000 bigram and trigram fea-
tures. Jansche and Abney (2002) proposed a phone number extractor based on a two-phase
procedure that employed a hand-crafted component derived from empirical data distribu-
tions, followed by a decision tree. These techniques rely explicitly on lexical information
and the best performing methods are based on hand-crafted rules.

In this paper we present an approach to voicemail summarization based on the extrac-
tion of content words from the message transcription. Each word is characterized by a set
of lexical and prosodic features, and we have trained classifiers on these feature vectors to
discriminate “summary words” from non-summary words. The set of features that we use
for the classification was obtained using Parcel (Scott et al., 1998), an ROC-based feature
selection methodology. We have carried out a number of experiments using a corpus of
Voicemail speech, collected and transcribed by IBM (Padmanabhan et al., 1998), in which
the behaviour of our summarization approaches, using speech recognizers with varying er-
ror rates, was evaluated using both objective error measurements (with respect to a human
generated reference) and subjective user tests.

2 Summarization as a classification problem

We have adopted aword-extractive approach to voicemail summarization (Koumpis et al.,
2001b), in which a summary is defined as a set of content words extracted from the original
message transcription. Given a spoken messageS , the word-extractive summarization can
be framed as the mapping of each transcribed word into a predefined summary class. This
classification problem is hard since there can be a large degree of within-class variability,
relative to the between-class variability. Increasing thedimensionality of the feature space
can enhance the training set discrimination but at a cost to generalization performance. If
a “gold standard” reference is available, with summary class labels for each word, then
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this approach can be evaluated using standard metrics basedon the true positive and true
negative rates, also known as sensitivity and specificity:

sensitivity=
TP

TP+FN
= true positive rate (1)

specificity=
TN

TN+FP
= true negative rate (2)

(3)

where TP is the number of true positives (when a word is correctly classified as belong-
ing to a class), TN is the number of true negatives, and FP and FN are the numbers of
false positives and false negatives, respectively. A receiver operating characteristic (ROC)
curve gives a compound representation of sensitivity and specificity, by plotting sensitiv-
ity against [1-specificity] (Zweig and Campbell, 1993; Provost and Fawcett, 2001). For a
binary classifier, the sensitivity and specificity are typically controlled by an acceptance
threshold: for a strict threshold the sensitivity will be low while the specificity very high.
If the threshold is lowered, specificity will fall while sensitivity will rise. In this way we
can compare classifiers at particular operating points.

For a given task, two classifiers may be compared using their ROC curves. One clas-
sifier dominates another classifier if it has a higher sensitivity at all specificities; in other
circumstances one classifier may be more sensitive at some specificities and the other may
be more sensitive at others (i.e., the curves cross). To obtain maximal sensitivity at all
specificities, Provost and Fawcett (2001) showed that a set of component classifiers could
be combined to give a composite classifier whose ROC curve is defined by the convex hull
of the component classifier ROC curves. This convex hull is referred to as the maximum re-
alizable ROC (MRROC) curve. Any operating point on the MRROCcurve can be achieved
by switching between the classifiers corresponding to the vertices of the convex hull.

3 The Voicemail corpus

We have used the IBM Voicemail Corpus-Part I (Padmanabhan etal., 1998), distributed by
the Linguistic Data Consortium (LDC). This corpus contains1801 messages (14.6 hours,
averaging about 90 words per message). We used two test sets:the 42 message develop-
ment test set distributed with the corpus (referred to as test42) and a second 50 message test
set provided by IBM (test50). The messages in test42 are rather short, averaging about 50
words per message, whereas the messages in test50 are closerto the training set average of
90 words per message. The messages in this corpus may be categorized as 27% business-
related, 25% personal, 17% work-related, 13% technical and18% in other categories.

We built a hybrid multi-layer perceptron (MLP) / hidden Markov model (HMM) speech
recognizer for the voicemail task (Koumpis and Renals, 2000, 2001). The essence of the
hybrid approach is to train neural network classifiers to estimate the posterior probability
of context independent phone classes, then to use these probabilities (converted into like-
lihoods by dividing with the priors) as inputs to a HMM decoder (Morgan and Bourlard,
1995). The system used two MLPs, one trained using perceptual linear prediction acous-
tic features, the other using modulation filtered spectrogram features. The log posterior
probabilities estimated by the two networks were averaged to produce an overall log pos-
terior probability estimate. During speech recognition training, we reserved the last 200
messages of the corpus as a development set, resulting in a 1601 message training set. An
initial trigram language model was estimated using the training transcriptions. This training
set was augmented with those sentences from the Hub-4 Broadcast News and Switchboard
language model training corpora which had a low perplexity with respect to the initial lan-
guage model, and the language model reestimated. We used a pronunciation dictionary
containing around 10 000 words derived from the training data, with pronunciations ob-
tained from the SPRACH broadcast news system (Robinson et al., 2002), plus 1 000 new
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Training Development Test42 Test50
Messages 800 200 42 50
Transcribed words 66 049 17 676 1 914 4 223
Total content words 20 555 5 302 561 820

Proper names 2 451 666 111 170
Phone numbers 3 007 577 120 190
Dates and times 1 862 518 46 81
Other 13 235 3 541 284 379

Compression rate 31% 30% 29% 19%

Table 1: Voicemail content word annotation.

words with pronunciations mainly constructed following the rules used to construct the
broadcast news dictionary. The OOV rates were 1.6% on test42and 2.0% on test50. Addi-
tionally we used 32 manually designed compound words (Saon and Padmanabhan, 2001).
The average test set WERs were 41.1% on test42 and 43.8% on test50. We denote these
transcriptions SR-SPRACH. Additionally, we obtained a second set of transcriptions (de-
noted SR-HTK) using the more complex HTK Switchboard system, adapted to the Voice-
mail corpus (Cordoba et al., 2002). The WER for SR-HTK was 31%for both test sets.

We annotated summary words in 1 000 messages of the Voicemailcorpus. The first
800 messages were used as a summarization training set, and the last 200 used as the
development set. The transcriptions supplied with the Voicemail corpus include marking
of NEs, and we built on this using the following scheme:

1. Pre-annotated NEs were marked as targets, unless unmarked by later rules;

2. The first occurrences of the names of the speaker and recipient were always marked
as targets; later repetitions were unmarked unless they resolved ambiguities;

3. Any words that explicitly determined the reason for calling including important
dates/times and action items were marked;

4. Words in a stopword list with 54 entries were unmarked;

All annotation was performed using the human transcriptiononly (no audio).
As shown in Table 1 the compression rate in our training, development and testing ma-

terial was in the range of 19% to 31%. To assess the level of inter-annotator agreement we
compared the performance of 16 human annotators asked to create word-extractive sum-
maries for five messages, at a compression rate of 20–30%. 14 out of 16 of the annotators
produced their summaries by progressively eliminating irrelevant words (rather than select-
ing content words), and in nearly all cases the annotators tended to a compression rate of
29–30%. Inter-annotator agreement may be measured by theκ statistic:

κ =
Po−Pe

1−Pe
(4)

where Po is the proportion of times the annotators agree, and Pe is the expected chance
agreement. In this caseκ averaged 0.48, indicating a relatively good level of agreement.

4 Lexical and prosodic features

The architecture of the voicemail summarization system is shown in Figure 2. Lexical
information is obtained from the ASR transcriptions, whileprosodic features are extracted
from audio data using signal processing algorithms or (in the case of pause and durational
features) may be extracted by the speech recognizer. Each word in the transcription is
represented by a set of lexical and prosodic features (listed in Table 2).
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Lexical Features
ac: acoustic confidence
cf1: collection frequency
cf2: collection frequency (stem)
ne1(all): all NEs match*
ne2(all): all NEs match (stem)*
ne1(nam): proper names match*
ne2(nam): proper names match (stem)*
ne1(tel): telephone numbers match*
ne2(tel): telephone numbers match (stem)*
ne1(d/t): dates and times match*
ne2(d/t): dates and times match (stem)*
ne1(oth): other NEs match*
ne2(oth): other NEs match (stem)*
pos: word position in message

Prosodic Features
dur1: duration norm. over corpus
dur2: duration norm. over message ROS
pp: preceding pause*
fp: succeeding pause*
e: mean RMS energy norm. over message
∆F0: delta of F0 norm. over message
F0: average F0 norm. over message
F0(ran): F0 range
F0(on): F0 onset
F0(off): F0 offset

Table 2: Lexical and prosodic features calculated for each word in the voicemail training,
development and test sets for the summarization tasks. The features marked with an asterisk
(*) are represented by binary variables.
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Figure 2: An overview of the word-extractive summarizationapproach based on systematic
comparisons and combination of patterns present in spoken audio.

4.1 Lexical features

For each word in the training, development and test sets we calculated scores corresponding
to collection frequency, NE matching, word positioning andacoustic confidence.

4.1.1 Collection frequency

Collection frequency (Robertson and Sparck Jones, 1997) isan information retrieval mea-
sure which models the fact that words which occur only in a fewmessages are likely to
be more informative than words which occur often in the entire corpus. For a term wi the
collection frequency is defined as:

CFWwi = log
N
nwi

(5)

where N is the number of messages in the training data and nwi is the number of messages
that word wi occurs in.

4.1.2 Named entity matching

Often the most important pieces of information in a message are the named entities (NEs):
people, places, organizations, numbers and dates. Identification of NEs in voicemail is less
straightforward than for text. Rather than train or adapt a statistical NE identifier (Gotoh
and Renals, 2000) for voicemail, we used matches with an NE list of 3 400 entries, 2 800
of which were derived from the Hub-4 BN corpus (Stevenson andGaizauskas, 2000), the
remainder derived from the Voicemail training data transcriptions.

4.1.3 Word positioning

It is well known (Edmundson, 1969) that the location of termsand sentences within a
document can be a good indicator of their relevance to its content. We thus derived a
related feature by associating each word in the voicemail transcriptions with a position
index which was normalized across messages.
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4.1.4 Acoustic confidence

Ideally, we would like to extract only those words that were recognized correctly. Acous-
tic confidence measures, which may be extracted directly from the acoustic model for
MLP/HMM speech recognizers (Williams and Renals, 1999), quantify how well a rec-
ognized word matches the acoustic data, given the model.

4.2 Prosodic features

Prosodic features concern the way in which sounds are acoustically realized and can dis-
ambiguate a text transcription (e.g. question or statement) or add new information (e.g. the
speaker’s emotional state). The main focus of existing computational theories of prosody
is on stress and intonation, primarily as reflections of the lexical, syntactic and informa-
tion structures. One such theory developed by Pierrehumbert and colleagues (Pierrehum-
bert, 1980; Beckman, 1986) has three main distinguishing features. First, it assumes that
phrasal intonation is comprised of a string of tones generated by a finite-state automaton.
In general, this will consist of an optional boundary tone, aseries of pitch accents, a phrase
accent, and an optional final boundary tone. The second feature of the theory is the de-
composition of the text to be associated with the tune into some metrical representation,
indicating stressed and unstressed syllables. The third feature of the theory is the system
of rules for associating tune with text. Thus, given some metrical representation of the
text and intonational string of tones, there is a mechanism which associates the two. Ladd
(1996) made another distinction for intonation, between the contour interaction theories,
which treat pitch accents on words as local differences of a global contour for the phrase,
and the tonal sequence approaches, which treat phrasal tuneas compositional from a se-
quence of elements associated with the word. Computationaltheories of prosody however
have not yet progressed to a point where interesting generalizations can be made for an
engineering approach to voicemail summarization. Hence, we decided to use raw prosodic
features without addressing any formal theory of prosody inour modelling.

The manual annotation of prosody can be a very complex task, requiring a great deal
of time and training. Most linguistic prosody research still relies heavily on the hand-
labelling of speech, augmented by semi-automated computeranalysis tools, since this is
by far the most accurate way to obtain precise estimates of prosodic features. However, a
machine learning approach to automatic speech summarization requires large quantities of
data for training purposes, for which prosody can not be expertly transcribed. Using signal
processing algorithms or the output of the speech recognizer we automatically extracted
and computed the correlates of basic prosodic features associated with each transcribed
word. These features can be broadly grouped as referring to pitch, energy, word duration
and pauses. Various versions for some features were used anda more detailed description
of them follows.

4.2.1 Durational features

The durations of the recognized words and phones may be extracted from the speech rec-
ognizer output (assuming that Viterbi decoding is used), and normalized within a message.
Phone durations were expressed relative to the expected duration, normalizing to zero mean
and unit variance. Word durations were normalized in a similar way, with expected dura-
tions computed as a sum of the expected durations of constituent phones (using the pronun-
ciation dictionary). We also extracted rate-of-speech (ROS) information using the enrate
tool (Morgan et al., 1997) which calculates the syllable rate based on the computation of the
first spectral moment of the low frequency energy waveforms corresponding to a chosen
time series segment.
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Figure 3: The ROC curves produced by linear classifiers with respect to the development set
for voicemail summarization, using the features listed in Table 2 (excluding those referring
to class specific NE matching).

4.2.2 Pause features

Typically, pauses reflect the speaker’s uncertainty in formulating utterances marking a con-
flict between speech planning and speech production. ASR systems in general treat silence
as an additional subword unit and recognize it in the same wayas other phone models.
Therefore, from a practical perspective pauses may be seen as the duration of the silence
models, which are easily extracted from the recognizer output. Due to the spontaneous na-
ture of speech in Voicemail corpus we decided not to use raw pause durations themselves.
Instead we defined binary features for preceding and succeeding pause, which took non-
zero values if non-speech regions preceding or succeeding aword exceeded a duration of
30 ms1. Although we did not explicitly consider filled pauses, these might be informative
about important words (Maclay and Osgood, 1959; Shriberg, 2001).

4.2.3 F0 features

The fundamental frequency (F0), was computed using the pda function of the Edinburgh
Speech Tools (Taylor et al., 1999). This function implements a super resolution pitch de-
termination algorithm proposed by Medan et al. (1991). To correct for estimation errors,
we smoothed the output values using a 5–frame median filter.

We used a number of features derived from the estimate of F0: the mean, range and
slope of the F0 regression line over a window ranging three frames preceding and following
each word; the F0 onset (the first non zero value in segment); and the F0 offset (the last non
zero value in segment). In case there were not enough F0 samples in the examined window
to calculate an adequate feature value (e.g. for short wordssuch as articles), each missing
value was set to the minimum available value from the words inthe window’s vicinity.

4.2.4 Energy features

Energy features were calculated using the energy function of Edinburgh Speech Tools (Tay-
lor et al., 1999). This function calculates the RMS energy for each frame of the waveform.

1The selection of 30 ms as a threshold to identify pauses within a message is somewhat arbitrary and was
derived by studying a subset of forced alignments of the training data.
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Figure 4: The ROC curves produced by linear classifiers with respect to the development
set for the four target classes using the individual features listed in Table 2.

5 Feature selection

Each word in a transcribed voicemail message was represented by a vector of lexical and
prosodic features, as described above. Some of these features provide more information for
the task at hand than others, and some features may be redundant given other features. In
this section we assess the informativeness of these features for the voicemail summarization
task first by considering single feature classifiers, then developing optimal feature subsets
using an ROC-based algorithm, Parcel.

5.1 Performance of individual features

We investigated the informativeness of each of the lexical and prosodic features listed in
Table 2 for the voicemail summarization task by training linear classifiers on each feature
in turn.

5.1.1 Single summary class

In Figure 3 we show the ROC curves given by linear classifiers each trained on a single
feature, testing on a development set. The best features forextracting summary words
were lexical: collection frequency and NE matching. Of the prosodic features, the most
important were durational, followed by energy. Features based on F0 information did not
offer significant discrimination, when used alone.

5.1.2 Separate summary classes

In Figure 4 we consider each of the summary classes (names, numbers, dates/times, other)
separately and show an ROC curve for each feature and each summary class.
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Proper names were identified very accurately by matching to named entity lists. In
particular, matching with the unstemmed proper name list resulted in a very high true pos-
itive rate with low false positive rate. The unstemmed general NE list also performed well,
with stemmed variants being rather less accurate. Collection frequency also offered good
discrimination with the stemmed variant performing slightly but consistently better than
the unstemmed variant (cf1). Word position (pos) had strong negative correlation with
this summary class, indicating that proper names are mostlypositioned at the beginning
of voicemail transcriptions where the position features have low values. Regarding the
prosodic features, mean RMS energy, features based on F0 and duration (in descending
order) gave useful discrimination. A weak correlation withfollowing pauses (fp) was also
observed.

Telephone numbers were also identified accurately by specific named entity lists. The
date/time specific named entity lists also matched well for this class (both name lists contain
digits). Word position (pos) offered a good discriminationas telephone numbers typically
appear towards the end of a message. Collection frequency had an interesting correlation
with this class. For words with low collection frequency thecorrelation was strongly nega-
tive, while the correlation was slightly positive for wordswith a collection frequency above
the average. It is also notable that the telephone numbers class had the highest acoustic
confidence among all summary classes. Of the prosodic features only the durational ones
proved to be correlated with telephone numbers. The rest of prosodic features did not offer
any useful discrimination.

The remaining two classes (dates/times and other) were lessaccurately identified by
name matching. For dates and times, the specific named entitylist was a good predictor, as
were the collection frequency features. The prosodic features were not particularly good
predictors for this class, with the best being following pause and the durational features. For
the other class, matching to named entity lists was not useful, with the most informative
features being the collection frequencies. Among the prosodic features the most useful
were the word durations, energy and the F0 range.

5.2 Selection of multiple features

We used a feature selection approach, in which the data was used to guide us to an optimal
feature subset. Instead of demanding a single classifier andfeature set (which would be
optimized for a particular operating point in ROC space) we adopted an approach that
maintained a set of classifiers and feature sets, enabling optimal performance at all points
in ROC space. This approach, referred to as Parcel (Scott et al., 1998), builds on the notion
of the MRROC curve formed as the convex hull of component ROC curves (section 2).

Parcel is an iterative algorithm that selects those classifiers and feature sets that can
extend the MRROC. It does not select a single feature subset (or classifier), but selects as
many feature subset/classifier combinations required to maximize performance at all op-
erating points. The operation of Parcel for feature selection is illustrated in Figure 5. In
this example, the objective is to find a MRROC for a problem with a data set described
by the features{a},{b} and{c}. Sequential forward selection (SFS) is used in our imple-
mentation to search the feature space but any combinatorialsearch algorithm could be used
instead. SFS starts with an empty set of features and at each iteration adds to the current
subset the feature from those remaining that best satisfies the evaluation criterion.

Phase A: estimate single feature classifiers and generate the ROC curves for each candi-
date feature. For continuous output classifiers vary a threshold over the output range
to plot the ROC curve. The MRROC(old) is the diagonal.

Phase B: form the convex hull of the ROC curves and retain those classifiers that corre-
spond to the vertices of the convex hull. If MRROC(new) differs2 from MRROC(old),

2Each new classifier/feature either extends the existing convex hull or does not. The degree of difference
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the algorithm proceeds. Set MRROC(old) equal to MRROC(new). In the example
of Figure 5, as classifiers produce a continuous output to which different thresholds
have been applied to predict class membership, the convex hull, MRROC(new), has
five vertices.3 Two use feature subset{b}, and three use{a}.

Phase C: for each retained classifier c in the vertices of MRROC(old) if there are N total
features and c has nc features, then form N−nc new classifiers, each with nc +1
features, formed by adding each remaining feature to the input feature set. Generate
ROC curves for the new classifiers and recompute the convex hull.

Phase D: retain those classifiers that are used to form the vertices ofthe convex hull (In
Figure 5 two use feature subset{a, c}, the others using{b}, {a, b} and{b, c}). If the
new convex hull does extend the old convex hull go to Phase C. Otherwise, terminate
and return the set of classifiers that are the vertices of the convex hull.
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phase C phase D
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Figure 5: The operation of the Parcel algorithm in searchingfor the feature subsets that pro-
duce the MRROC, after Scott et al. (1998). Only those systemsthat their operating points
lie on the MRROC are saved, as the rest can never be optimal. Clear visual comparisons
and sensitivity analysis can be performed at each step of thealgorithm’s operation.

Using Parcel, it is possible to use multiple classification algorithms and to carry out
the search for suitable classifiers to form the MRROC by not only varying the feature
subset, but also the classification algorithm. We used five classifiers within this framework:
k-nearest neighbour (knn, k=5); Gaussian classifier (gau);single layer network (sln); multi-
layer perceptron (mlp); and Fisher linear discriminant (fld).

The training performance of the Parcel algorithm is shown inFigure 6, which graphs
the MRROC curves of the development set for each of the classifiers (left), and selecting
from lexical only, prosodic only and all features (right). The classifiers in this case were
trained on the human transcriptions. The k-nearest neighbours classifier gave very good

is implementation dependent. In our experiments we required a 5% minimum difference for the algorithm to
proceed.

3The convex hull of a set of points is the smallest convex hull that contains the points.
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Figure 6: The MRROC curves produced by Parcel on the development set, using the fea-
tures listed in Table 2 (excluding those referring to class specific NE matching). The left
graph compares the role of the five classifiers employed whilethe right one depicts the MR-
ROC produced by all classifiers from lexical only, prosodic only, and lexical and prosodic
features. Classifier A is optimal at moderate precision/recall tradeoff; B is optimal at high
precision; and C is optimal at high recall.

trade-off between TP and FP for all four sizes of available training data. The Gaussian
classifier produces relatively high number of both TP and FP covering a wide range of
operating points. Finally, the results from the single layer network were relatively poor.

Although selecting from lexical features alone dominates selecting from prosodic fea-
tures alone at all operating points, it can be seen that thereis a clear benefit to augmenting
the lexical features with prosodic features such as pitch range and pause information. We
note that named entity matching and collection frequency were the most important single
features. Given a desired operating point in ROC space, Parcel enables us to choose a
classifier that is optimal (with respect to the development set) for that point.

6 Evaluation

The design of the automatic voicemail summarization systemfor mobile messaging re-
quires trade-offs between the target summary length and theretaining of essential content
words. The way message transcriptions are processed to construct summaries can affect
everything from a user’s perception of the service to the allocation and management of
the mobile network’s resources. Summaries are inherently hard to evaluate because their
quality depends both on the intended use and on a number of other factors, such as how
readable an individual finds a summary or what information anindividual thinks should be
included in it.

The following experiments were conducted using unseen testdata and the questions
we are looking to answer are the effects of speech recognition WER and of automatic
summarization. Speech recognition WER was varied using human transcriptions (denoted
SR-Human with 0% WER) and the speech recognition transcriptions described in section 3:
SR-SPRACH (41–44% WER) and SR-HTK (31% WER). The effect of automatic summa-
rization was obtained by comparing the automatic system described above with manual
summarization, and baseline automatic approaches (randomselection of words, and first
30% of the message).
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Figure 7: Extractive summarization scores on test42 and test50 for SR-SPRACH, SR-HTK
and SR-Human input, respectively.

6.1 Objective evaluation

We have used the slot error rate (SER)(Makhoul et al., 1999) to compare an automatically
generated summary against a human generated gold standard.The SER is analogous to the
WER, and treats substitution errors (correct classification, wrong transcription), insertion
errors (false positives) and deletion errors (false negatives) equally. Of the classifiers form-
ing the MRROC in the right of Figure 6, classifier A (using named entity match, collection
frequency, F0 range and following pause features) was used, since it has the shortest Eu-
clidean distance from the perfect classifier, and is most appropriate if the aim is to minimize
SER. Figure 7 shows these errors for summarization using classifier A applied to human
(SR-Human), SR-SPRACH and SR-HTK transcriptions for test42 and test50. Increasing
speech recognition WER results in an increased SER. The highest WER system, based
on SR-SPRACH, has a significantly higher deletion rate compared with SR-Human and
SR-HTK which may arise due to more summary words being misrecognized. Recognition
errors also give rise to substitutions in the summaries (compared with the gold standard)
and this can be seen by comparing the low level of substitutions for the system based on
human transcriptions, compared with the systems based on SR-SPRACH and SR-HTK.

For SR-Human, 80% and 72% correct content and classificationwas achieved on test42
and test50, respectively. For the SR-SPRACH transcriptions, 49% and 47% correct classi-
fication was achieved on test42 and test50, respectively. Atthe same time, for the SR-HTK
transcription scores were consistently higher, 60% and 55%correct content and classifica-
tion on test42 and test50, respectively. Deletion errors were 26% and 33% for SR-SPRACH
while for SR-HTK these were lower at 15% and 22%. SER scores for test50 follow the
same patterns with those for test42 while being slightly poorer primarily due to a higher
deletions rate as a result of the relatively short gold standard summaries of the messages
contained in the test50.
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Figure 8: Average MOS on 8 summaries for 5 messages from test42, judged by 10 subjects.

Question SR-Human SR-SPRACH
caller name 94% 57%
reason for calling 78% 78%
priority 63% 58%
contact number 82% 80%

retrieve audio 30% 53%

Table 3: Average percentage of correct answers in message comprehension.

6.2 Subjective and usability evaluation

The quality of a service cannot be represented by a single measure, but it is rather a com-
bination of several factors, including learnability, effectiveness and user satisfaction. Such
factors must be assessed by having representative users interact with each application built.
Usability testing ensures that application designs are on target and allow users to accom-
plish their tasks with ease and efficiency. Poor usability ofvoicemail summarization ap-
plications has a direct cost. Each time a user cannot determine the key content from a
summary, they have to retrieve the original audio recording.

We have conducted some subjective and usability tests on thesystem in a controlled
environment. These tests compared manual and automatic summaries presented in random
order from SR-Human, SR-SPRACH and SR-HTK transcriptions,along with the first 30%
and a random (but sequentially ordered) set of the words in the human transcription. The
mean opinion score (MOS) determined by 10 human subjects for5 messages summarized
in these 8 ways are shown in Figure 8. We found that subjects tended to agree more on
which summaries are of low rather than high quality and the overall κ statistic was in the
range 0.26 to 0.41. The scores indicate that the automatic summaries are considered to
be better than selecting the first 30% of words or random selection, but are inferior to the
corresponding human-generated summaries. Moving from human to automatic summaries
reduces the MOS by about 0.6, whereas moving from a human transcription to a speech
recognizer with 30–40% WER reduces the MOS by over 1 point.

A second set of tests aimed to assess the summary quality in terms of comprehension.
Subjects answered questions about message content (“caller name?”, “reason for calling?”,
“message priority?”, “contact number?”) based on the audioand the text summaries. We
used a WAP phone emulator to simulate transmitted summaries, and the audiovisual inter-
face is shown in Figure 9. The tests were carried out by 16 subjects who were presented
with the summaries and audio of 15 voicemail messages. The summaries used the human
and SR-SPRACH transcriptions, and the results are shown in Table 3. Human transcription
was considerably more reliable in determining caller identity (94% vs. 57%), but there
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Figure 9: Audiovisual interface used for summarization assessment allowing users to ac-
cess the original audio and the text summaries.

was less difference in determining the contact phone number(82% vs. 80%). The users
were able to determine the reason for calling with equal accuracy (78%) for both types
of transcriptions. The above results indicate that summaries produced using automatic
transcriptions are particularly useful for tasks such as determining the reason for calling,
priority of messages and contact numbers. It seems that users were able to associate the
words included in summaries to make global judgements aboutthe message content. The
above supports the hypothesis that even a few relevant wordsextracted from a transcription
can lead to good message perception and allow potential action to be taken. This evalua-
tion also showed that the users were much more likely to request the message audio, when
presented with summaries generated from the speech recognized message, compared with
summaries generated from human transcriptions (53% vs. 30%).

Message priority could be determined relatively accurately from the summaries: classi-
fying priority as high/medium/low, the priority obtained from the summary agreed with that
obtained from the audio 58% of the time for SR-SPRACH and 63% of the time for human
transcriptions. The cases where the subjects completely misjudged the message priority
from the text summaries were 2% (judged as high, while from the summary they thought it
was low) and 5% (judged as low, while from the summary they thought it was high). The
above results suggest that transcription errors affect mainly the identity of the caller while
they lead to 23% more retrievals of audio recordings as userswere not confident that the in-
formation they read in a summary corresponded to the full andcorrect content of voicemail
messages.

Figure 10 summarizes the time taken by users to answer the comprehension questions
about the voicemail messages, comparing summaries based onhuman and SR-SPRACH
transcriptions, and the original audio. Although not directly comparable (since each mes-
sage was used in one form only), the average comprehension time for speech recognition
summaries was about 30% greater than for the human transcription case. These times are
about 1.5 times longer than performing the same task using the audio. Note that these
figures include the time required to type the answers in the appropriate template fields
(Figure 9). This favours the audio retrieval scenario, where users can listen to the recording
while typing their answers. At the same time, while retrieving the text summaries they
had to browse the mobile display to find the appropriate bit ofinformation prior to typing
it. In practice, retrieving the audio would also involve connection overheads, such as typ-
ing a PIN. Despite the fact that in the above experiment the digestion of text summaries
was not found to be as rapid as that achieved by listening to the audio, the advantages of
summarization e.g. indexing and uninterrupted information flow in noisy places need to be
considered.

Finally, 13 out of the 16 subjects (81%) who took part in this evaluation would likely
use such a service regularly to access their voicemail messages while away from office or

16



0.0

10.0

20.0

30.0

40.0

50.0

60.0

10
 (t

es
t4

2)

17
 (t

es
t4

2)

18
 (t

es
t4

2)

28
 (t

es
t4

2)

32
 (t

es
t4

2)

04
 (t

es
t5

0)

06
 (t

es
t5

0)

08
 (t

es
t5

0)

16
 (t

es
t5

0)

27
 (t

es
t5

0)

29
 (t

es
t5

0)

36
 (t

es
t5

0)

40
 (t

es
t5

0)

45
 (t

es
t5

0)

47
 (t

es
t5

0)

message id

el
ap

se
d 

tim
e 

(in
 s

ec
) 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tim
es

 r
et

rie
ve

d 
au

di
o

time reading SR-Human summaries
time reading SR-SPRACH summaries
times retrieved audio
length of original audio

Figure 10: Message comprehension times comparing accessing the original audio to sum-
maries produced from human and SR-SPRACH transcripts.

home. This suggests that even average quality automatic summaries might be preferable
given the elaborate nature of accessing spoken audio.

6.3 Discussion

Engineering-oriented metrics and user input can be correlated with system properties to
identify what components of the system affect usability andto predict how user satisfaction
will change when other trade-offs are made (Walker et al., 1998). This evaluation frame-
work was extended in Koumpis (2002) with the aim to determinewhich metrics maximize
summary quality and minimize delivery costs within this automatic voicemail summariza-
tion system for mobile messaging. One disadvantage of this framework is the amount of
data required from subjective evaluations. Instead of solving for weights on the success
and cost measures using multivariate linear regression as in Walker et al. (1998), one could
use Parcel to calculate the role of each metric to the overallsystem performance. This is a
straightforward and possibly much more robust process as the metrics are numerical values
that can be used as inputs to simple classifiers that will be trained and validated using task
completion as perceived by human subjects as an external criterion.

Although treating transcribed words independently provedto work relatively well and
allowed us to study the correlation between word classes anda variety of features, it is
expected that if modelling is extended beyond the word levelclassification can be based on
the expectations from syntax, semantics and pragmatics andlead to better text coherence.
HMMs are a well developed probabilistic tool for modelling sequences of observations,
although the amount of annotated data requirements will need to be addressed.

It remains to be seen whether a similar approach can be used tocombine acoustic and
lexical features to rank messages by accuracy. This would have applications in filtering in
order to deliver only the summaries of preselected message types i.e., personal, or profes-
sional.

7 Conclusion

In this paper we have presented a framework for voicemail summarization, based on the
extraction of words from speech recognition transcriptions. The word extraction process
operated by training classifiers to identify words as summary words or not, with each word
represented by a vector of lexical an prosodic features. Thefeatures used in the summarizer
were selected using Parcel, a method based on ROC curves, which returned a collection
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of feature sets and classifiers which together were optimal at all points in ROC space.
Although lexical features (named entity list matching and collection frequency) were most
informative, we found that a significant improvement could be observed by augmenting
with some prosodic features.

We evaluated the resultant voicemail summarization systemthrough comparison with
human-generated gold standard summaries (using slot errorrate) and through subjective
user testing. We assessed the effect of transcription word error rate, comparing the per-
formance of automatic summarization approaches with respect to transcriptions produced
by hand and produced by recognizers with average word error rates of 31% and 42%.
The summarization slot error rate was dependent on the word error rate, but the difference
between the two speech recognition systems was small; however, the human transcribed
system was significantly better. We conducted a set of usability tests, using human sub-
jects, based on mean opinion score of summaries, and on a set of comprehension tests.
The main results from these experiments were that the automatic summaries were inferior
to human summaries, but there was a greater perceived quality difference between sum-
maries derived from hand- and automatically-transcribed messages, than between manual
and automatic summarization.
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