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ABSTRACT
This paper discusses the possibilities to extract features from the
speech signal that can be used for the detection of emotional
state of the speaker, using the ASR framework.

After the introduction, a short overview of the ASR framework
is presented. Next, we discuss the relation between recognition
of emotion and ASR, and the different approaches found in the
literature to tackle the correspondence between emotions and
acoustic features. The conclusion is that emotion itself will be
very difficult to predict with high accuracy, but in ASR general
prosodic information is potentially powerful to improve the
(word) accuracy for tasks on a limited domain.

1. INTRODUCTION
‘Emotion in speech’ is a topic that receives much attention
during the last few years, both in the context of speech synthesis
as well as in automatic speech recognition. The advantage of
‘emotionally rich’ speech synthesis is evident. The approach to
simulate the effect of emotion in synthetic speech is usually
based on acoustic analyses of databases of (human) ‘emotional’
speech. These databases contain utterances spoken by actors in
certain emotional ways. From these studies, it appears that a
number of basic emotions such as anger, sadness and happiness
can quite well be described in terms of changes in pitch,
duration and energy [e.g. 10, 20, 22], of which pitch is the most
important [26]. Modification of these parameters also shows
good results in speech synthesis for different languages (see e.g.
[12, 19]).

Also for ASR, the recognition of emotion in speech can be
useful. However, the automatic detection of emotion from the
speech signal is not straightforward. For example, it appears
from recent studies that the triplet happiness, sadness/neutral
and anger can be detected only with an accuracy of 60-80
percent [20, 26]. When more emotional ‘modes’ are to be
recognized (some studies distinguish 8 or more different
emotions), the detection score decreases substantially. A
number of studies narrow down ‘emotion’ to ‘stressed’, in the
sense of stressful (e.g. [5]). The task is to binary classify
utterances as ‘stressed’ or ‘not stressed’. With optimal choice of
the features used for classification, stress detection results
approach or exceed 90 percent. Other studies narrow down the
rather broad concept of emotion to a number of more pragmatic
classes: for example approval, attention, and  prohibition in
parent-child interactions [7]. This study shows a speaker-
independent recognition score of about 55 percent, and,

interestingly, a large speaker dependency of the accuracy
ranging from 60 to 90 percent (after a speaker dependent
training of the classifier).

Most of these studies concerning the detection of emotional
‘state’ of the utterance do not bother about the linguistic (text)
content of the utterance. They mainly deal with ‘stand alone’
recognition modules for emotion. In the following section, we
will discuss in more detail how emotion can be used in the ASR
framework.

2. THE ASR FRAMEWORK
In this section we briefly discuss the mostly used paradigm for
automatic speech recognition. Most of today’s automatic speech
recognition (ASR) systems treat the speech signal as an example
of a stochastic pattern and use statistical pattern recognition
techniques to produce a word sequence hypothesis. Speech
recognition is mostly defined as solving a maximum a posteriori
(MAP) problem, in which, for a incoming sequence of acoustic
vectors A, a sequence of words W must be found such that

P(W ¦ A)

is optimized, usually under additional constraints imposed by a
grammar. Under the general assumption that the Bayesian rule
applies, we obtain P(W ¦ A) = P(A ¦ W) * P(W) / P(A), and so
(P(A) being fixed):

argmax W P(W ¦ A) = argmax W { P(A ¦ W) * P(W) }

We see that we basically need the evaluation of two factors, the
first being P(A ¦ W), which is the probability of observing a
sequence of acoustic vectors given the word sequence, and the
second factor P(W), denoting the probability of the word
sequence itself. The first probability relates to the acoustic
model, while the second probability is referred to as language
model. For a commercial dictation system, the acoustic model
(AM) is usually trained using an acoustic training database of
50 to 150 hours of speech, while the language model (LM) may
require a text corpus containing 100-1000 million words. The
algorithm that actually performs the optimization of P(W ¦ A) is
based on a pattern recognition approach, and is often
implemented by using dynamic programming (DP) techniques.

The sequence of acoustic vectors A is the result of a properly
chosen feature extraction algorithm (FE). Two properties of the
FE are relevant for the discussion here. Firstly, the FE produces
a sequence of feature vectors or frames, typically 100 a second,
each vector representing the spectral characteristics of the sound
at that moment. Due to the windowing, the vector represents the



‘average’ of the speech spectrum over about 20-30 ms.
Therefore, the features contain information that is very local in
time. Secondly, for regular speech recognition tasks, the FE is
to be designed to normalize for all effects that have nothing to
do with the linguistic content. Such effects include background
noise, undesired channel effects, line echoes, microphone
characteristics, but also speaker-dependent characteristics such
as the vocal tract length. Speech features that are commonly left
out or at least neglected by the FE are the pitch and duration.
(The pitch is not left out in a number of ASR systems designed
to recognize tonal languages such as Chinese).

The feature extraction can be implemented in many ways, but a
very common, if not quasi-standard way, is to use mel-based
cepstral coefficients. These are based on an (fast) fourier
transform, followed by a non-linear warp of the frequency axis,
the logarithm of the power spectrum, and the evaluation of the
first N coefficients of this log warped power spectrum in terms
of cosine basis functions. (In recent years, other promising
approaches get the attention that they deserve, such as auditory
features, articulatory features, and discriminative features.) The
general focus of the FE is to produce short-time spectral
features that are normalized for a number of factors that are
considered irrelevant for the ‘text’ content of an utterance. The
way an utterance is produced, with high or low pitch, fast or
slow, angry or sad, these are all irrelevant factors as seen from
the default ASR point of view.

Another well-known aspect of the ASR ‘engine’, which is of
ultimate importance for the modeling power of a recognizer, is
the use of so-called Hidden Markov Models (HMMs). The
commonly used algorithms all use HMMs to model the acoustic
properties of the recognition tokens. These recognition tokens
may be entire words, or (mono)phones, diphones, triphones,
multiphones, syllables, multi-words, or combinations of them,
etc. No matter how an ASR algorithm is designed, sooner or
later there has to be some construction to connect the incoming
speech vectors (from the FE), the information from the lexicons
and the language model. The final output of the ASR algorithm,
often a list of N-best hypotheses, is then the result of
competition between acoustic and language scores, from the
acoustic model and the language model, respectively. The issue
here is, that in the standard manner of training an HMM model,
all HMM states with be aligned with a small number of acoustic
frames, thereby modeling a short acoustic event. So, although
the HMM models themselves can be used to model speech units
of various lengths, the HMM states ‘in the classical’ ASR still
correspond to small time scale events, on segmental or maybe
syllable level. Emotion, however, is a feature that manifests
itself beyond syllable level.

The last aspect that we want to emphasize is the Markov
assumption. This assumption is applied in the evaluation of
P(W) as well as inherently used in the evaluation of P(A ¦ W) in
evaluating the HMMs. The fact that commercially available
recognition systems perform reasonably well (with a score of
90-95 percent for a dictation task using a lexicon of 60000
words, after speaker adaptation of the acoustic models) shows
that the Markov assumption is not that bad. But from a
theoretical point of view, the assumption does not hold, and it is

to be considered as a drastic simplification of reality. Whether
features such as emotion can be modeled using the Markov
assumption is not straightforward.

Evidently, the ‘linguistic content’ of an utterance goes beyond
the concatenation of units on segmental level. The use of pitch
to mark prominence, or to disambiguate meaning, or to put
emphasis on parts of speech in focus, or the use of volume to
attract attention are examples of this. According to many
studies, pitch is the most relevant acoustic parameter for the
detection of emotion, followed by duration and energy. When
we want to integrate supra-segmental information, say pitch,
into the ASR/HMM paradigm, there are principally two
methods, one related to the ‘front end’ of the recognizer, the
second one to the ‘back end’.

1. In the first method, the FE is enriched with a
pitch detection algorithm. The pitch feature (or a
related feature describing the harmonic structure
of the spectrum) is used to create a separate
‘acoustic models’ (using e.g. a pitch/delta-pitch
codebook). The acoustic model used in tests is a
combination of the gross-spectral model and the
pitch model. In this way, one can improve the
performance of a recognition system for Chinese
with about 10-30 percent reduction in word
error rate. The ‘tones’ are to be transcribed in
the lexicon on the syllable level.

2. The second method is to evaluate the pitch in
the FE, but to use the pitch information only at
the stage of rescoring the N-best list that is
produced by the regular ASR recognizer. In this
way, one may use pitch, word stress or other
supra-segmental or lexical information to
improve the recognition score [see e.g. 21]. In
contrast with method 1, this method can also be
used when pitch is to mark information that is
on the supra-word level, e.g. focus. Therefore
this or a similar method is particularly useful in
improvement of recognition results in dialogues.
We come back to this method in the next
section.

As an illustration of focus in a dialogue system, the simple
negation

No, I’ll take the train to London at 5 p.m.

has a number of readings depending on the pitch contour. The
use of prosodic information is also of ultimate importance for
studying the dialogues of players talking within a limited
discourse domain. The success so far has been limited, but
recently more progress has been claimed in the relation between
ASR performance and prosodic properties of utterances
[compare e.g. 2, 3 and references herein].



3. EMOTION AND ASR
Human emotions include love, sadness, fear, anger, and
joy/happiness as basic ones, and some people add hate, surprise,
and disgust, and distinguish ‘hot’ and ‘cold’ anger. Some
studies distinguish ‘emotion’ from ‘mood’: an emotion is
always referring to an object: one grieves over something, one
loves somebody, etc. In this more precise sense, we here deal
with the reflection of mood, rather than of emotion, in the
speech signal. (We will stick to the word emotion, though.)

3.1 Affective computing
Quite some research effort is now being put into a field what is
called ‘affective computing’ [9]. The goal is to design ASR and
TTS related algorithms that understand and respond to human
emotions. The commonly applied approach is to start with a
database with emotional that is annotated with emotional tags
by a panel of listeners. In most cases, such utterances are spoken
by actors mimicking specific emotional states (see e.g. [6, 7, 17,
19]). The next step is to perform an acoustic analysis on these
data, and to correlate statistics of certain acoustic features
(pitch, pitch range, etc.) with the emotion tags. This step may
involve techniques also used in ASR (such as Gaussian
modeling), but also other classification techniques are used
(VQ, ANN) [26]. In the third step, the resulting parameter
estimates are verified and adapted by using a speech synthesis
tool, and by a final check of the synthesis in a human
classification test.

In the context of ASR, an appropriate way to deal with emotion
is to regard an utterance on a number of levels:

• text (segmental) level. This level is accessed by
the classical ASR - the voice activated
typewriter.

• prosodic (supra-segmental) level: pitch, volume,
pausing, phrasing, speaking rate: this level is
addressed by recognition systems aiming at the
transcription/detection of word accents,
intonation patterns, pausing.

• ‘emotion’ level: neutral, sadness, happiness,
anger, etc.

• ‘functional’ level: directive, question, approval,
attention, prohibition, etc.

There is an interaction between ASR performance and prosodic
properties of the utterance. First of all, ASR performance is
known to vary depending on the level of formality and speaking
style [14, 15]. For most systems, in order to obtain optimal ASR
result, the ASR test conditions should be ‘the same’ as the ASR
training conditions, and so variations in speaking style and
speaking rate have a negative impact for the ASR performance.
To speak slower than normal is usually less worse than speaking
faster than normal. It is a well-known effect that customers of a
voice operated information system or IVR system tend to hyper-
articulate when they can’t get through the dialogue, which is
usually a bad strategy to get better recognized (see e.g. [1]). But
prosody can be also used in a positive way. For example, a

number of studies show that prosody itself is capable of re-
ranking the ASR hypotheses such as to separate the correctly
recognized utterances from incorrectly recognized ones [11, 4,
2, 3]. In fact, it is claimed in [3] that some prosodic features can
more accurately predict when an ASR hypothesis contains a
word error than acoustic confidence scores do. That means that
some prosodic features provide useful information to explain
ASR recognition failure. It is not yet clear [3] whether these
features directly hamper the ASR search (and therefore trivially
correlate with word recognition errors) or whether they are
indirectly associated with properties in the speech signal that
deteriorate ASR performance.

ASR errors can often, but not always, be associated with
prosodic effects in the speech signal, mainly with speaking rate,
and phrasing. Although ASR systems are designed not to be
sensitive to pitch and loudness variations, these variations can
still percolate though the feature extraction and affect the
acoustic modeling and the test. In other words, the output of the
ASR recognition may depend on prosody of the speech input,
although the ASR only worries about the words – in that view,
the impact of prosody is just a negative side effect. This
dependence is undesired or at least not aimed at for the classical
ASR, but may at the same time be useful and advantageous for
ASR systems serving e.g. a dialogue purpose.

In general, the ability to generate speech with a particular
emotional value does not at all guarantee the ability to correctly
recognize that emotion from the speech signal. Broadly stated,
synthesis just needs one good exemplar, which the ASR must be
robust against the whims of fashion of the speaker.

3.2 Findings in literature
Research of emotions in speech primarily deals with the search
for acoustic features of speech that distinguishes a number of
emotional states. The topic receives increasing attention during
the recent three, four years. In this section we aim at an
overview of approaches and results.

In [6] the emotions anger, fear, sadness, anxiety, and happiness
were studied in terms of their prosodic and articulatory
correlates. It was found that especially speech rate, segment
duration and accuracy of articulation are useful parameters to
determine the emotional state of the speaker. For example,
sadness was clearly shown to correlate with slow speech, while
fear correlates with a higher speaking rate than average.
Anxious utterances show segments that are shorter than average,
with exception of voiceless plosives which are often aspirated.
Also in [8], relations were shown between the emotional state
and the duration of vowels and consonants. But pitch is the
speech feature that is most useful to distinguish emotional state
[8], or anyway to convey supra-textual information. In [7], a
study was conducted to automatically classify an utterance
(spoken by a parent to a young infant) into three types:
approval, attention, and prohibition. Compared to a system that
is to detect emotional states, this looks like an easy task, but it
appears far from trivial to obtain a good performance. Based on
pitch slope, mean pitch and mean delta pitch, measured globally
on the entire utterance, the results were close to 55 percent
correct on average. To define percentage correct, the automatic



classification has been compared with some human consensus
classification. One of the key observations in this study is that
emotional ‘production’ ‘varies wildly’ among individuals.
Classifiers that have been based on speaker dependent features
showed correctness scores ranging from 60 percent up to 92
percent (based on 30 to 50 utterances per parent-infant pair).
Apart from the relation between emotion and pitch, pitch range,
tilt, pronunciation accuracy, also a relation between emotion
and vocal quality have been claimed [23].

Synthesis. Many of the emotion studies in fact deal with the art
of speech synthesis [see e.g. 12, 18, 20, 24, 25]. To simulate
emotional states in synthesis, one evidently needs direct specific
control especially over pitch, segment duration and phrasing
parameters to create the desired emotional effect. Speech
synthesis modules have been as a tool to study the impact of
supra-segmental features on the perception of emotion. For
ASR, however, segment duration is not an easily accessible
parameter of the speech signal. Moreover, the speaking rate
correlates with many more speech and speaker characteristics,
e.g. with articulatory sloppiness and non-nativeness of the
speaker.

Some studies attempt to synthesize emotional speech with a
speech synthesizer using a parameter space covering not only
f0, duration and amplitude, but also voice quality parameters,
spectral energy distribution, harmonics-to-noise ratio, and
articulatory precision [e.g. 18]. They focus at the four emotions
anger, sadness, fear and disgust. They conclude that sadness is
the most ‘distinctive’ emotion, compared to stimuli of each of
the other emotions. In [20] one aims at recognition of seven
emotions: neutral, cold anger, hot anger, happiness, sadness,
interest and ‘elation’. The acoustic parameters used were
fundamental frequency, energy, standard deviation of energy,
jitter, and shimmer; all parameters measured globally across
utterances, and appropriately averaged. In this study, anger and
sadness could quite clearly be distinguished from each other,
but other emotions show quite a large confusability. (The
database contained two speakers only – which is too small to
draw firm conclusions.)

In a number of cases, synthesis model parameters are also based
on rules derived from a database with speech with ‘emotional
prosody’ (for e.g. Spanish see [12]).. Using this collected data, a
rule-based simulation of three primary emotions was
implemented in the TTS system. It was attempted to simulate
the three emotions happiness, sadness, and anger using
manipulation of pitch (range, level, slope), and a number of
additional parameters (spectral tilt, and noise that is added to
the voice source). The resulting success rate of about 60-70
percent. The same technique was applied for Japanese [24], in
an attempt to improve the expression of the three emotions joy,
anger, and sadness by using CHATR, the concatenative speech
synthesis system being developed at ATR.  A perceptual
experiment was conducted using stimuli synthesized on the
basis of each emotion corpus. The results proved to be
significantly identifiable by a panel. From these prototypical
databases, they study the acoustic features relevant for
specifying a particular emotion. F0 and duration showed
significant differences among emotion types. They showed that

mean fundamental frequency was lowest for sadness and highest
for happiness/joy. Duration per phone for sadness was longest
and for anger was the shortest. They also looked at pauses, and
the only significant finding was that pauses were longer in the
‘sad’ corpus than they were in the other corpora.

Influence of culture. It may be difficult to identify the emotion
of a speaker from a different culture [16, 19]. In [16], it was
also found that listeners will predominantly use the visual mode
to identify emotion if they have the chance to do so. Cultural
similarities and differences between 7 Japanese and 5 North
American subjects have been compared in the recognition of
emotion. Japanese and American actors made vocal and facial
expression (short utterances) to transmit six basic emotions:
happiness, surprise, anger, disgust, fear, and sadness. There
were three presentation conditions: auditory, visual, and audio-
visual. It was shown that subjects using the auditory mode can
more easily recognize the vocal expression of a speaker who
belongs to their own culture (the subjects were not bilingual).
Both Japanese and American subjects identify the audio-
visually incongruent stimuli more often by the visual mode
rather than by an auditory mode.

Language dependencies. Emotional patterns may be language
dependent [19]. This study examines how prosody contributes
to the percept of emotions in Japanese and French synthesized
speech.  They find the major features determining the emotion
to be pitch, speaking rate, duration and the energy of syllables.
They found prosodic parameters for five emotions: anger,
surprise, sorrow, hate, and joy.  Responses to the synthesized
speech showed that the parameters of anger, sorrow and hate are
confirmed over 85 percent. Their experimental results suggest
that surprise and joy may depend more on semantics, rather than
prosody.

Linear – nonlinear features. Another approach is taken in [5].
Rather than the effect of emotion in general, they study the
effect of a stressful situation on the speech characteristics.
Stressful or highly emotional modes usually deteriorate the
performance of a speech recognition system. To address this,
they investigate a number of linear and nonlinear features and
processing methods for the classification of what the authors
call ‘stressed’ speech. The linear features include properties of
pitch, duration, energy, glottal source parameters. The nonlinear
part of the processing is based on the ‘Teager Energy Operator’,
incorporation of frequency domain critical band filters and
properties of the resulting TEO auto-correlation envelope. The
TEO in discrete form reads

TEO(x[n]) = x[n]*x[n] – x[n+1]*x[n-1]

which acts like a non-linear ‘energy’. The classification
algorithm is based on the Bayesian hypothesis testing and
hidden Markov modeling. For each stress condition, a Gaussian
pdf has been modeled to match the training vectors – these
training vectors were sequences of measurements of the
individual features over time. The tests focuses on utterances
under adverse conditions such as ‘loud’, ‘angry’, and the
Lombard effect from the database SUSAS (‘Speech under
Simulated and Actual Stress’). This database had been exploited
earlier by one of the co-authors. Results using ROC curves and



EER based detection clearly indicate that pitch is the best of the
five ‘linear’ features for stress classification (result about 88
percent); the nonlinear TEO-based feature, however,
outperforms pitch by about 5 percent. The authors observe that
stressed speech seems to be affected differently across
frequency bands. (In phonetic studies, similar effects are
observed. It is well known that there is a relation between
spectral tilt of a vowel sound and the presence of word stress on
the corresponding syllable. This relation is based on the
correlation between word stress, vocal energy and mouth
aperture. Unfortunately, the quantification of this effect is vowel
dependent to a large extent.)

This study shows the effectiveness of particular ‘linear’ and
‘non-linear’ features for detection of ‘stressed speech’. For ASR
this suggests that the focus should be always on formulating
robust features, which are less dependent on the speaking
conditions, rather than on the application of compensation or
adaptation techniques.

The speech material in [13] consisted of two semantically
neutral utterances spoken by two actors (one male, one female)
mimicking a neutral tone and three moods: anger, happiness and
sadness.  The duration, fundamental frequency (F0) and the
sound intensity (RMS) were used as features.  Also this method
showed that the fundamental frequency parameter was the most
distinctive, showing differences between anger and happiness
according to the shape of the contour, and between "cold" anger
and "hot" anger on F0 mean. The study confirms findings
showing hot anger and happiness having an large F0 range and
high mean in contrast to the emotion of sadness, and the neutral
voice.

Short term-long term. As we could expect, long term features
seem to outperform short-term features [26]. It was attempted to
recognize the emotional status of individual speakers by using
speech features extracted from short-time as well as long-time
analysis frames. The classification task was to distinguish 6
emotions: neutral, happiness, anger, fear, surprise, and sadness.
A principal component analysis was used to analyze the
importance of individual features in representing emotional
categories, and to reduce the dimensionality (the number of
features used in the recognition system is reduced from 22 to
12, per utterance). Three classification methods (vector
quantization, artificial neural networks and Gaussian mixture
density model) were used; and classifications were carried out
using short-term features only, long-term features only and both
short-term and long-term features. The Gaussian mixture
density method with both short-term and long-term features
showed the best recognition performance (62%, based on 5
speakers, 15 sentences/speaker in training, 5 in test, so also in
this study the test is quite small). The analyses show that of the
six emotions, there are three groups that stand out with respect
to distinctiveness: neutral-sadness, anger-fear, and happiness-
surprise. Within these groups, the separation is much more
difficult. In another study, [17] discusses a method in which an
‘emotional index’ is evaluated over time, thereby avoiding the
choice between short and long term features. A set of basic
emotions is defined, and for each such emotion a reference
point is computed. At each instant the distance of the measured

parameter set from the reference points is calculated and used to
compute a ‘membership index’ for each emotion, the ‘emotional
index’. In this preliminary study, the authors report success
rates of about 50 percent for 5 emotions (acoustic measurements
based on 24 speakers).

4. DISCUSSION --CONCLUSION
In this section, we summarize a number of issues that have been
discussed or addressed on many of the cited studies, and which
are all related to the possible use of emotion-related features in
ASR.

1. Acoustically, emotions overlap and appear in various
degrees. Of all the basic emotions the triplet happiness,
anger, and sadness can be most clearly distinguished in
terms of the phonetic features. In general, the most useful
phonetic feature is shown to be pitch; one study [5] defines
a non-linear energy-related feature outperforming pitch in a
cut down stress detection task.

2. In general, the recognition of emotion is not
straightforward. A score of 60 percent is about the best one
can get in a limited happiness/joy, anger, sadness/grief
discrimination task.

3. The acoustic realization of specific emotions seems to be
speaker dependent to a large extent.

4. There is evidence that the acoustic realizations of emotions
seem to be language dependent.

5. If more emotions are to be classified, one study supports a
quite clear distinction between the three ‘groups’ neutral-
sadness, anger-fear, and happiness-surprise. Within these
groups, the separation is much more difficult.

6. Gaussian modelling is among the best methods to
distinguish emotional classes in a space spanned by the
following phonetic parameters: pitch, pitch range, average
pitch, all measured across the entire utterance after
endpointing (i.e. pause/speech boundary detection).

7. Almost all studies support that pitch mean is lowest for sad
speech and highest for joy/happiness.

8. The validation of an automatic emotion recognition system
is based on subjective judgements from a panel. A number
of studies show that it is difficult to define an objective
scale for subjective phenomena. That is one reason why an
analysis may perform well on an individual basis for each
speaker, and worse for all speakers simultaneously. Such
effects seem to have played a role in many studies cited
here. Automatic classifications can only be as good as the
reference data. In the best case, the reference databases
have been annotated by a form of consensus labeling.

9. Findings reported in the literature support the statement
that prosodic information shows potential power to
improve the ASR (word) accuracy for tasks on a limited
domain. The same may hold for emotional information.



10. In most studies, the training and test sets are quite small –
several orders smaller than the acoustic databases used in
regular ASR training and test. Given the possibility of
speaker dependency and the dependency of semantics,
conclusions on the possibility of automatic detection of
emotional tags cannot be really firmly justified in a general
case.
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