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ABSTRACT

We investigate the use of prosody for the detection of frustra-
tion and annoyance in natural human-computer dialog. In ad-
dition to prosodic features, we examine the contribution of lan-
guage model information and speaking “style”. Results show that
a prosodic model can predict whether an utterance is neutral ver-
sus “annoyed or frustrated” with an accuracy on par with that of
human interlabeler agreement. Accuracy increases when discrim-
inating only “frustrated” from other utterances, and when using
only those utterances on which labelers originally agreed. Further-
more, prosodic model accuracy degrades only slightly when using
recognized versus true words. Language model features, even if
based on true words, are relatively poor predictors of frustration.
Finally, we find that hyperarticulation is not a good predictor of
emotion; the two phenomena often occur independently.

1. INTRODUCTION

As we strive to make spoken language systems increasingly natu-
ral, it becomes clear that systems must recognize not onlywhat
words a person says, but alsohow the words are spoken—i.e.
the user’s emotion, as conveyed by speechprosody. Emotion
recognition has direct consequences for a wide variety of applica-
tions, from games and educational software (e.g., to detect if users
are enthusiastic or bored), to life-support systems (e.g., to detect
panic), to commercial products (e.g., to detect if a user is angry
and should be transferred to a human operator). In this work we
focus on the last type of application, specifically, on the detection
of user frustration with a telephone-based dialog system interface.
Although we focus on frustration, we note that our method is gen-
eral and could be extended to emotion detection involving any type
of emotion or domain.

There has been considerable past work in the area of character-
izing and detecting emotion in speech [1, 2, 3, 4, 5, 6]. The current
study differs from from previous work in a number of ways. First,
much of the past work has studiedelicitedemotions, produced by
a small number of actors who are simply instructed to convey the
emotion when reading prepared sentences. Elicited data may be
ideal for research in areas like descriptive linguistics and speech
synthesis, which aim to characterize canonical emotions. For work
in recognition of natural emotions across many different speakers,
however, it is crucial to use naturally-occurring data. This study
utilizes a dataset containing a large number of different speakers
engaged in a task that itself gives rise to emotion. Second, past
work has often used methods that are not entirely automatic, as-
suming correct word transcriptions and features that rely on hand-
marked data (such as corrected pitch tracks or locations of specific

Table 1. Statistics of labeled data

Source Dialogs Utterances Time period
CU 205 5619 11/1999–6/2001
CMU 240 8765 1/2001–8/2001
NIST 392 7515 6/2000
Total 837 21899 -

measurement locations), or relied on very simple prosodic features
(e.g., excluding durations) that did not require recognition output.
The present work is based on the output of a speech recognizer
(free recognition, with forced alignment for comparison), and uses
prosodic features that are computed entirely automatically. Third,
unlike studies that examine either emotion or speaking style, or
which confound the two, in this work we aim to determine the
association between the two, by including hand-marked speaking
style characteristics in our database. By including the character-
istics (such as hyperarticulation, pausing, or raised-voice) along
with our prosodic features, we can determine which, if any, of
the style characteristics are good predictors of emotion, and the
relative predictive strength of such features as compared to pure
prosodic measurements. That is, our methods for emotion detec-
tion are entirely automatic, but we can ask whether there would be
added value for emotion detection if we were able to automatically
detect speaking style.

2. METHODOLOGY

2.1. Speech data

We used a large, multi-site research and evaluation corpus of
human-computer dialog developed under the DARPA Communi-
cator project [7]. Users called systems built by various sites and
made air travel arrangments over the telephone. Although users
were not “acting” out any instructed emotions, it is important to
note that because users were not making real travel plans, the fre-
quency of frustration was lower than it would have been in real life.
The data used in this project came from three sources: the Univer-
sity of Colorado (CU) Communicator system, the Carnegie Mellon
(CMU) Communicator system, and data from a larger number of
sites collected during the June 2000 Communicator evaluation and
distributed by NIST. The amount of data used in our study and
their collection periods are summarized in Table 1. All data were
collected over the telephone and sampled at 8 kHz. Roughly 75%
of the utterances were used for training; the remaining 25% were
used for testing; no dialogs were split between training and test
sets.



2.2. Emotion labeling

User utterances were labeled by five students from UC Berkeley.
Because we wanted labeling to reflect judgments of the average
person, labelers came from different disciplines. Labeling was
done using a modified version of the Rochester Dialog Annotation
Tool (DAT) [8].

Emotion labels.Every utterance was given one of seven pos-
sible emotion labels: NEUTRAL, ANNOYED, FRUSTRATED,
TIRED, AMUSED, OTHER, or NOT-APPLICABLE (contained
no speech data from the user).

A total of 49,553 emotion classifications were made on 21,899
utterances from the NIST, CU, and CMU recordings, for an aver-
age of 2.26 labelers labeling each utterance. The breakdown of
class frequencies is shown in Table 2.

In addition to emotion, each utterance was also labeled for
three further types of information: speaking style, repeated re-
quests or explicit corrections, and data quality problems. For
speaking stylewe settled on the following, nonexclusive cate-
gories: hyperarticulation (exaggerated pronunciation of specific
phones or syllables), pausing (between words or between sylla-
bles in a word), and “raised voice” (an increase in pitch, loudness,
or both). Forrepeated requests or corrections, we labeled utter-
ances either not a repeat/correction, a “repeat-or-rephrase-only”,
a “repeat-or-rephrase-with-explicit-correction”, or an “explicit-
correction-only”, based on [9]. Fordata qualitywe marked prop-
erties of the speaker (nonnative, speaker switches, system devel-
oper), properties of the speech content (side-talk, joking), and
aspects of the recording (noise, system cut-offs). While joking
and system cut-offs were included in our analyses, we omitted the
other cases from the present study. In principle we would have
liked to retain the nonnative speech, which was not infrequent in
the CU corpus. But because such speakers (1) were difficult or
impossible to judge hyperarticulation for; and (2) weremuchmore
tolerant of system failures than native speakers (as judged by the
nonnatives’ much longer calls and low level of frustration), we de-
cided to omit them for the sake of data homogeneity.

Labeling Issues.We found that labeling of emotion as well
as speaking style is an inherently difficult task. First, emotion
is conveyed on a continuous scale, and for purposes of this work
we needed to come up with discrete labels (alternative approaches
such as additional classes or uncertainty labels, did not improve in-
terlabeler agreement). Second, emotion characteristics vary enor-
mously from person to person, and from context to context. Thus
an issue that arose was whether to label emotion relative to the
speaker and previous context, or to use an absolute labeling ignor-
ing both of these factors. We chose the former option, since that
is the most relevant option given the application in mind (detect
changes in the current user over the dialog). Finally, most of our
utterances were quite short, often just the word “Yes” or “No”,
making emotion and style difficult to judge.

“Original” and “Consensus” Labels. In a first pass, label-
ers annotated individually after calibration. Interlabeler agreement
(even after grouping ANNOYED and FRUSTRATED together)
was only about 71%, with a Kappa of 0.47. We deemed this too
low for our purposes, but note that it appears to be due to the task
rather than to our labelers, because agreement among the various
pairwise combinations of labelers did not significantly differ, and
because agreement did not improve with additional training. We
therefore conducted a second pass of labeling, which we refer to
as “Consensus” labeling, in which the two most experienced label-
ers together relabeled any utterances that original labelers had not

Table 2. Frequency of emotion labels. NOT-APPLICABLE cases
are waveforms with no user speech; these are excluded in the anal-
yses. Note that low rate of frustration overall is attributable to the
fact that users were not making real travel plans, as discussed in
the text.

Emotion Class Instances Percent
NEUTRAL 41545 83.84%
ANNOYED 3777 7.62%
FRUSTRATED 358 0.72%
TIRED 328 0.66%
AMUSED 326 0.66%
OTHER 115 0.23%
NOT-APPLICABLE 3104 6.26%
Total 49553 100.0%

agreed on.

2.3. Speech recognition and forced alignment

Both the prosodic and language model features for our modeling
relied on alignment information from a speech recognizer. Rather
than use the recognition results from the various Communicator
systems (which were not always available), we ran a simplified
version of SRI’s Hub-5 system for conversational telephone speech
[10], using a class-based trigram language model developed for
SRI’s own Communicator system. This ensured that recognition
errors and the specifics of the recognition system (such as the
choice of pronunciations) affected data from all sites equally. The
word error rates obtained with this system were 29.6% for CMU
data, 27.8% for the CU data, and 24.9% for the NIST data (mea-
sured on the subset of utterances used in our experiments). To
investigate the effects of recognition errors, we also computed fea-
tures based on the reference transcriptions of the users’ utterances,
via forced alignment to the waveforms.

2.4. Prosodic model

Prosodic features. We extracted the following types of features:
duration and speaking rate features, pause features, pitch features,
energy features, and spectral tilt features.Duration featuresin-
cluded the maximum and average durations of the normalized (for
true or recognized phone identity) vowels or phones in the utter-
ance. Speaking rate featuresincluded the number of vowels di-
vided by the duration of the utterance.Pause featuresincluded the
ratio of speech to pause time, the duration of the longest pause,
and the number of long pauses inside an utterance.Pitch features,
which proved to be quite useful, were based on post-processed F0
output using a stylization and regularization algorithm based on
an updated version of [11]. Pitch was further post-processed using
a lognormal tied mixture model of F0 that provides estimates of
an individual speaker’s pitch range [11]. We used two versions,
one based on data from all utterances in a call, and one using only
the first five utterances. The latter, which turned out to be nearly
as good as the full-call version, allows for online emotion detec-
tion (especially since users are rarely frustrated during the first five
utterances). Pitch features included raw and speaker-normalized
minimum and maximum utterance pitch, as well as the maximum
pitch taken within the region of the longest normalized vowel, and
slopes at various locations.Energy featuresincluded the maxi-
mum or average RMS energy during voiced frames and during the
longest normalized vowel, normalized by the mean and variance



Pro+Rep+Sty Pro+Rep Pro_only Rep_only LM_only
Features Allowed in Decision Tree Model

60

70

80

90

100

A
cc

ur
ac

y 
(P

er
ce

nt
 C

or
re

ct
)

 ANNOYED+FRUSTRATED vs. ELSE, Consensus

 ANNOYED+FRUSTRATED vs. ELSE, Orig. Agreed

 FRUSTRATED vs ELSE, Consensus 

Fig. 1. Comparison of annoyance and frustration detection with
different input features. Pro = prosody, Sty = Style, Rep = rep-
etition/correction feature. The dashed line indicates accuracy for
human interlabeler agreement on the first task.

of energy over the whole call (or over the first 5 utterances only).
Spectral tilt featuresincluded the average of the first cepstral co-
efficient, the average slope of the linear fit to the magnitude spec-
trum, and the average difference in the sum of log energies in low
and high frequency regions—all taken over the longest normalized
vowel. In addition to the prosodic features, twononprosodic fea-
tures were included: the position of the utterance in the dialog,
and the labels described earlier for repeated attempts and explicit
corrections. Position can be assumed to be automatically obtained
by a system; repeats and corrections are of course not as easy to
obtain, but we consider their detection a separate problem and one
in which many systems already have some ability to detect.

We used decision trees as our classifiers, employing a brute-
force iterative feature selection algorithm to find a minimal set of
useful features and avoid the problem of greedy search. Because
of the large skew in our class sizes, we downsampled our data to
equal class priors to allow the tree maximum sensitivity to fea-
tures. This approach, when used in multiple experiments (varying
the downsampling random seed each time), proved superior to not
downsampling and also to upsampling. In testing, we used all the
data, but weighted the class accuracies to simulate equal classes.

2.5. Language model features

We trained a class-based trigram model from the words in each of
the classes (using the same word classes as used in the recognizer),
and computed log likelihoods according to the models for each of
the test utterances. For convenience and to best assess the joint
contribution of language model and prosodic features, we added
the language model features to the prosodic decision trees. We
tried two types of language model features. One feature, the dif-
ference of log likelihoods of the two classes, was heavily used by
the decision trees, but led to poor results on the test data, clearly
showing overfitting. We eliminated this feature in favor of a more
coarse feature, thesignof the likelihood difference, which did not
show overfitting problems.

3. EXPERIMENTS AND RESULTS

Experiments were run with two basic classification tasks: AN-
NOYANCE+FRUSTRATION vs. ELSE, and FRUSTRATION

vs. ELSE. In both cases, the ELSE class contained all remaining
emotion types (NONE, plus the small amounts of other emotions
such as TIRED, AMUSED, and OTHER, since we wanted to ac-
count for all datapoints). The first task allowed us to use signifi-
cantly more emotional data, as can be inferred from Table 2. The
latter task aimed to detect only extreme cases of anger. Results
for both tasks, using both true and recognized words, are shown
in Table 3. The different rows in the table show results for differ-
ent experiment conditions, in which we varied both the source of
the predicted emotion labels and the features available to the deci-
sion tree. In the “Consensus version” experiments, the model pre-
dicted the labels resulting from the consensus labeling pass; in the
“Originally agreed” experiments, only the subset of utterances for
which individual labelers had been in agreement on pass 1 were
included. Note that the latter case is expected to show better re-
sults, since presumably labelers agreed on cases that were more
clear-cut prosodically. Results are given in both accuracy (per-
centage of correct decisions) and “efficiency” (reduction in class
entropy provided by the model). Because of the fairly limited size
of our emotional-utterance corpus, we report results averaged from
20 separate experiments for each condition, each with a different
random downsampling of the training data.

Looking first at the ANNOYANCE+FRUSTRATION
vs. ELSE experiments, as summarized by the middle column of
Table 3, we can draw several conclusions. First, we see that the
baseline experiment (Consensus version, no STYLE features) at
75.2%, shows better prediction of human consensus labels than
individual human labelers do with each other (72.6%). When we
exclude the dialog state (repeat/correction) feature, the results are
slightly worse (71.1% for tree versus 72.6% for human to human.)
We also see that when considering only the utterances on which
labelers originally agreed, performance consistently improves
by 5–6% (except for the language model only experiment.).
The repeat/correction feature always increases performance,
sometimes by up to 4%. Again this is expected, since users
are typically more frustrated after system errors. Speaking
style features also increase performance relative to the baseline
prosodic tree. Potential candidates for the improvement include
hyperarticulation, pauses, and raised-voice features; the actual
contributing feature is discussed in the section on feature usage
below. The FRUSTRATION vs. ELSE experiment involved very
little data, and thus only cautious conclusions can be drawn. One
of these is that the performance on this task is consistently and
significantly better than on the ANNOYANCE+FRUSTRATION
vs. ELSE classification (by an average of about 9%).

All the above experiments are based on forced alignments for
feature processing. In parallel experiments using automatic recog-
nition outputs, accuracies were only 0.1-2.6% worse in the AN-
NOYANCE+FRUSTRATION vs. ELSE task, and slightly better in
the FRUSTRATION vs. ELSE tasks, as shown in Table 3. These
results imply that for this (and possibly other) emotion recognition
tasks based on whole utterances, highly accurate word recognition
is not necessarily a requirement.

Overall feature usage for the ANNOYED+FRUSTRATED
versus ELSE task used five main types of features. We report fea-
ture usage as the percentage of decisions for which the feature type
is queried; thus features higher in the tree have higher usage than
those lower in the tree. The most-queried feature type, temporal
features, represented roughly 28% of total usage. The features in
this category were mainly normalized duration and speaking-rate
features, including features normalized by only the first five utter-



Table 3. Summary of experimental results. “STYLE” = speaking style features; “REP” = repeat/correction features; “LM” = language
model features; “Consensus version” = emotion labels arrived at after labelers resolved any disagreements; “Originally agreed” = subset
of utterances on which individual labelers had agreed on first labeling pass; “Acc” = accuracy (linear average of 20 separate experiments);
“Eff” = efficiency (linear average of 20 experiments). Note: LM features were computed for the first task only, although in principle could
be computed for both. Accuracies reflect simulated equal class distributions in the test set through sample weighting.

ANNOY.+FRUST. vs. ELSE FRUST. vs. ELSE
True words ASR words True words ASR words
Acc Eff Acc Eff Acc Eff Acc Eff

Each human with other human, overall 72.6 68.8
Human with human “Consensus” (biased) 83.9 77.3
Consensus version, [All Features] 80.2 32.7 93.2 67.2
Originally agreed, [All Features] 85.4 47.2 91.8 63.3
Consensus version, [no STYLE] (“Baseline”)75.2 21.2 75.1 21.9 86.4 46.5 87.0 49.5
Originally agreed, [no STYLE] 80.0 32.0 78.5 28.2 86.4 44.6 85.7 46.9
Consensus version, [no STYLE, no REP] 71.1 14.6 70.7 14.8 84.2 39.7 86.7 47.9
Originally agreed, [no STYLE, no REP] 77.1 23.0 74.5 18.6 80.4 31.8 83.6 39.6
Consensus version, [REPonly] 69.8 12.8 76.6 21.1
Originally agreed, [REPonly] 74.7 18.5 85.4 14.3
Consensus version, [LMonly] 65.6 3.8
Originally agreed, [LMonly] 64.5 -0.9

ances in the call. Longer durations and slower speaking rates were
associated with frustration. Pitch features represented about 26%
of total usage, and included the maximum F0 in the longest vowel,
the maximum overall F0, the times that the maximum and mini-
mum F0s occured, the maximum speaker-normalized F0 rise, and
the distance of various F0 statistics from the speaker baseline. All
were associated with frustration when their values were high. The
repeat/correction feature represented roughly 26% of total usage
as well, with (as expected) more frustration after system errors.
The speaker-normalized RMS energy accounted for 11% of the
usage, and the remaining 8% of usage was from features tracking
the number of dialog exchanges between the user and system thus
far.

The experiments showed that among the speaking style fea-
tures, only raised voice is a helpful predictor for emotion. Hy-
perarticulation and pauses between syllables and words were not
useful. This indicates that it is not crucial to detect hyperarticu-
lation for emotion detection, and confirms our initial decision to
treat the two phenomena as separate. However, our prosodic fea-
tures could be useful in detecting hyperarticulation itself, although
this remains an interesting open question for further study.

4. ACKNOWLEDGMENTS

Kai Filion, Mercedes Carter, and Kattya Baltodano participated in the first
data labeling pass. Harry Bratt and Kemal S¨onmez developed the pitch
stylizer used in feature computation. We thank the Communicator teams at
CU, CMU, Lucent, and SRI for providing the data to our project, and Eric
Fosler-Lussier, Katrin Kirchhoff, and Mari Ostendorf for valuable discus-
sions. This work was funded by the DARPA ROAR program under con-
tract N66001-99-D-8504, by NASA award NCC 2-1256, by NSF STIM-
ULATE grant IRI-9619921, and by the DARPA Communicator project at
ICSI and U. Washington. The views herein are those of the authors and do
not reflect the policies of the funding agencies.

5. REFERENCES

[1] R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias,
W. Fellenz, and J. Taylor, “Emotion recognition in human-computer
interaction”, IEEE Signal Processing Magazine, vol. 18, pp. 32–80,
January 2001.

[2] T. Moriyama and S. Ozawa, “Emotion recognition and synthesis sys-
tem on speech”,in Proceedings from IEEE International Conference
on Multimedia Computing and Systems, vol. 1, pp. 840–844, June
1999.

[3] J. Nicholson, K. Takahashi, and R. Nakatsu, “Emotion recognition in
speech using neural networks”,Neural Computing and Applications,
vol. 9, pp. 290–296, 2000.

[4] F. Dellaert, T. Polzin, and A. Waibel, “Recognizing emotion in
speech”, in H. T. Bunnell and W. Idsardi, editors,Proc. ICSLP, vol. 3,
pp. 1970–1973, Philadelphia, Oct. 1996.

[5] A. Batliner, K. Fischer, R. Huber, J. Spilker, and E. N¨oth,
“Desparately seeking emotions, or: Actors, wizards, and human be-
ings”, in Proceedings of the ISCA Workshop on Speech and Emotion,
pp. 195–200, Belfast, Sep. 2000.

[6] C. M. Lee, S. Narayanan, and R. Pieraccini, “Recognition of nega-
tive emotions from the speech signal”,in Proceedings IEEE Auto-
matic Speech Recognition and Understanding Workshop, Madonna
di Campiglio, Italy, Dec. 2001.

[7] M. Walker, J. Aberdeen, J. Boland, E. Bratt, J. Garafolo,
L. Hirschman, A. Le, S. Lee, S. Narayanan, K. Papineni, B. Pel-
lom, J. Polifroni, A. Potamianos, P. Prabhu, A. Rudnicky, G. Sanders,
S. Seneff, D. Stallard, and S. Whittaker, “DARPA Communicator di-
alog travel planning systems: The June 2000 data collection”, in
P. Dalsgaard, B. Lindberg, H. Benner, and Z. Tan, editors,Proc. EU-
ROSPEECH, pp. 1371–1374, Aalborg, Denmark, Sep. 2001.

[8] “The Multiparty Discourse Group”, http://www.cs.rochester.edu/-
research/cisd/resources/damsl/, April 2002.

[9] K. Kirchhoff, “A comparison of classification techniques for the au-
tomatic detection of error corrections in human-computer dialogues”,
in Proceedings of the NAACL Workshop on Adaptation in Dialogue
Systems, Pittsburgh, PA, June 20001.

[10] A. Stolcke, H. Bratt, J. Butzberger, H. Franco, V. R. Rao Gadde,
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