Announcements

Lectures 1-15 are available.

Homework 4 will be available tomorrow, due 11/12.
Backup Links (inbound traffic)

• Hack: AS_PATH padding.
Backup Links (inbound traffic)

- AS_PATH padding does not shut off all traffic.
- AS 9 has higher LOCAL_PREF for customer routes.
- Some traffic from AS9 still flows through the backup link.
Backup links (inbound traffic)

- COMMUNITY to the rescue!
- AS9 has LOCAL_PREF = 100 for customer and 90 for peer.
- AS9 has the following import policy:
 - If 9:90 in community, set local_p pref to 90.
 - If 9:80 in community, set local_p pref to 80.
 - If 9:70 in community, set local_p pref to 70.
- AS2 advertises its routes (over the backup link to AS9) with community 9:70.
- Now peer has higher local pref and traffic flows as intended!
Policy Interaction

- Example: backup route with community hack.
- AS4 advertises prefix a over its (only) link.
Policy Interaction cont’d

- Backup link gets installed, AS1 advertises community 4:70.
- AS4 still prefers route via AS3 (highest localPref).
Backhoe Severs Primary Link

- AS2 withdraws route to a.
- Backup link takes over.

```plaintext
LOCAL_PREF=80
LOCAL_PREF=100
LOCAL_PREF=90
LOCAL_PREF=100
LOCAL_PREF=80
```
Primary link restored

- AS4 is still advertising route to AS1.
- Route from AS2 has lower local pref, gets ignored!
- Route pinning.
NO_EXPORT (0xFFFFFFFF01)

• Received routes with the NO_EXPORT community are not re-advertised beyond the receiving AS.
NO_ADVERTISE (0xFFFFFFFFF02)

• Used in conjunction with the third-party NEXT_HOP.
• Most of AS1 is behind A.
• D does not speak BGP.
• AS1 advertises 12.2.4.0/24 with the NO_ADVERTISE.
• B uses D to forward packets to 12.2.4.0/24.
• This fine structure is not exported beyond AS2.
I-BGP Scaling

- I-BGP peering sessions can be wasteful of resources.
 (Lines represent I-BGP sessions, NOT physical links!)
I-BGP Scaling

• Really wasteful!
 – CPU
 – Memory
 – Link capacity

• Poor scaling.

• Replicated traffic.
 – Chances are there is only one link between each group of four routers in the picture!
Route Reflection

- Relax the rule about not re-advertising I-BGP-learned routes.
 - Add hierarchy to I-BGP.
- Reduces # of sessions.
- RR can simply copy UPDATE messages (saves CPU).

Before:

After:
Before/After

Lines represent IBGP sessions.
Route Reflection, cont’d

• I-BGP peers of a Route Reflector:
 – *Clients*
 – *Non-clients*

• A RR and its clients form a *Cluster*.

• Non-clients still form a full I-BGP mesh with each other.

• Clients only talk to their RR
 – And external peers, of course.

• Clients are normal I-BGP peers.
 – All they know is that they have been configured to peer with the RR.

• Which routers become RR depends on the topology.
 – Ditto for clusters.
Route-Reflector Route Selection

- RR receiving multiple routes to same destination runs regular BGP route selection procedure.

<table>
<thead>
<tr>
<th>Received from:</th>
<th>Reflect to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonclient peer (RR or otherwise)</td>
<td>clients only</td>
</tr>
<tr>
<td>client</td>
<td>all other clients*</td>
</tr>
<tr>
<td></td>
<td>all nonclient peers</td>
</tr>
<tr>
<td>EBGP</td>
<td>all clients</td>
</tr>
<tr>
<td></td>
<td>all nonclient peers</td>
</tr>
</tbody>
</table>

*Except when clients are fully-meshed.
Redundancy in RR

• If a route reflector goes down, I-BGP setup gets partitioned.
 – Not good!
• Redundancy.
• Each cluster gets at least two RRs.
 – Each client in the cluster talks to both RRs.
 – Yes, they get duplicate UPDATEs.
• RRs fully meshed.
• Clients can also be fully meshed inside a cluster.
 – RR must be configured not to readvertise to its own clients.
• Topology considerations.
 – I-BGP sessions should (if possible) flow over distinct links.
RR with Redundancy
Nested RR Configurations

- A client does not know it is a client!
 - A RR can be client of another RR.

- D is C’s client, but B&E’s RR.
RR and Attributes

• RR preserve BGP attributes.
• Necessary to avoid loops due to interactions with the IGP.
• NEXT_HOP in particular.

• Fewer actual paths are possible.
• Bizarre interactions can occur.
• RR/Clustering should follow topology.
Avoiding Loops

- Relaxation of the I-BGP re-advertising rule can lead to loops.
 - In cases of misconfiguration.
- ORIGINATOR_ID
 - Optional, non-transitive (type code 9).
 - Router ID of router that injected the route.
 - Added by the RR.
- CLUSTER_LIST
 - Optional, non-transitive (type code 10).
 - List of clusters that an UPDATE has traversed.
 - CLUSTER_ID should be the same in RRs of the same cluster.
 - Also added by the RR.
 - Remind you of anything?
Confederations

- RR enforces hierarchy.
- Alternative: break up AS into smaller ASes:
Confederations, cont’d

• Entire AS runs a single IGP.
 – Areas may or may not overlap with sub-ASes.
• Routers inside each sub-AS run normal I-BGP.
• BGP sessions between border routers of sub-ASes in the same confederation: EIBGP (what else!)
• Like E-BGP but with some changes.
 – LOCAL_PREF and MED are carried along.
 – NEXT_HOP is set by the first router, then carried along.
 – New AS_PATH segments:
 • AS_CONFED_SET (type 3).
 • AS_CONFED_SEQUENCE (type 4).
 • Stripped when going over a (real) EBGP session.
 – NO_EXPORT_SUBCONFED community.
• Route selection process is the same as with “regular” BGP.
 – Change: Prefer EBGP over EIBGP over IBGP.
Confederation Topology Considerations

- AS_PATH length stays constant (sub-AS components don’t count).
 - Packets may take suboptimal path:
- Confederations should follow physical topology.
- Hub-and-spokes configuration usually gives best results.
RR vs. Confederations

• Experience varies.
• In RR, only the reflectors have to support the extension.
 – Not so in Confederations.
• Sub-ASs in a confederation can run individual IGPs.
• You can actually do RR inside a confederation.