Lecture 13
Border Gateway Protocol, Part II

John Ioannidis
AT&T Labs – Research

ji+ir@cs.columbia.edu
Announcements

Lectures 1-13 are available.
Have you been working on your project proposal?

Still looking for a TA.

Acknowledgement: some of the slides for this lecture have been “inspired” by Tim Griffin’s BGP Tutorial.
Transit vs. Non-transit Networks (review)

- AS3 provides transit between AS1 and AS2.
- AS3 also provides transit between AS2 and AS4.
- AS3 does not provide transit between AS1 and AS4.
Transit vs. Non-transit Networks (review)

- If AS1 and AS4 need to talk, they install their own link.
Transit vs. Non-transit Networks (review)

- Or find another network to provide transit traffic.
- (Or they can negotiate with AS3!).
Customer pays provider for access.
Customer just has default route pointing to provider.
Provider has static route pointing to customer.
Customer does not need BGP.
Customer-Provider Relationship

- This also works with multiple connections between Customer and Provider.
- IGP actually takes care of using closest link (how?).
• Customer-Provider relationships can be hierarchical.
• Each network pays their *upstream* provider.
Peering

- Peers provide transit between their respective customers.
- Peers DO NOT provide transit for other peers.
 - They do if they have a customer relationship!
 - How is this enforced?
Peering is About Shortcuts
Peer or Customer?

• Each provider’s customers:
 – Want to “connect” to customers of other providers.
 – Provide services that others may want/need.

• Providers, in response:
 – Should pay to provide upstream service to their customers.
 – Should get paid to make their customers available.

• Peering agreements result from this contention.
 – Peering implies no exchange of money.
 – Your peers are your competitors!
 – Peering agreements are often confidential.
 • And subject to periodic negotiation.
Peer or Customer? Cont’d

• Similar-size providers peer.
 – Tier-1, Tier-2, etc. providers.

• Customers who exchange a lot of traffic may also peer!

• A customer may have multiple upstream providers.
 – Multihoming.

• “Back-doors” may be installed for special customers.
 – Columbia is not Verizon’s customer.
 – But lots of Verizon DSL customers want to connect to Columbia.
 – Verizon may install a private link to Columbia just for their DSL customers.
Back to BGP

- Path Attributes in particular.

- Table:

<table>
<thead>
<tr>
<th>Withdrawn Routes Len</th>
<th>Withdrawn Routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Attributes Len</td>
<td>Path Attributes</td>
</tr>
<tr>
<td>Network Layer Reachability Information</td>
<td></td>
</tr>
</tbody>
</table>
Path Attributes

<table>
<thead>
<tr>
<th></th>
<th>Attribute</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ORIGIN</td>
<td>RFC 1771</td>
</tr>
<tr>
<td>2</td>
<td>AS_PATH</td>
<td>RFC 1771</td>
</tr>
<tr>
<td>3</td>
<td>NEXT_HOP</td>
<td>RFC 1771</td>
</tr>
<tr>
<td>4</td>
<td>MULTI_EXIT_DISCRIMINATOR</td>
<td>RFC 1771</td>
</tr>
<tr>
<td>5</td>
<td>LOCAL_PREF</td>
<td>RFC 1771</td>
</tr>
<tr>
<td>6</td>
<td>ATOMIC_AGGRGATE</td>
<td>RFC 1771</td>
</tr>
<tr>
<td>7</td>
<td>AGGREGATOR</td>
<td>RFC 1771</td>
</tr>
<tr>
<td>8</td>
<td>COMMUNITY</td>
<td>RFC 1997</td>
</tr>
<tr>
<td>9</td>
<td>ORIGINATOR_ID</td>
<td>RFC 2796</td>
</tr>
<tr>
<td>10</td>
<td>CLUSTER_LIST</td>
<td>RFC 2796</td>
</tr>
<tr>
<td>11</td>
<td>DPA</td>
<td>deprecated</td>
</tr>
<tr>
<td>12</td>
<td>ADVERTISER</td>
<td>RFC 1863</td>
</tr>
<tr>
<td>13</td>
<td>RCID_PATH/CLUSTER_ID</td>
<td>RFC 1863</td>
</tr>
<tr>
<td>14</td>
<td>MP_REACH_NLRI</td>
<td>RFC 2283</td>
</tr>
<tr>
<td>15</td>
<td>MP_UNREACH_NLRI</td>
<td>RFC 2283</td>
</tr>
<tr>
<td>16</td>
<td>EXTENDED_COMMUNITIES</td>
<td>draft-ietf-idr-bgp-ext-communities-05.txt</td>
</tr>
<tr>
<td>17</td>
<td>NEW_AS_PATH</td>
<td>draft-ietf-idr-as4bytes-05.txt</td>
</tr>
<tr>
<td>18</td>
<td>NEW_AGGRGATOR</td>
<td>draft-ietf-idr-as4bytes-05.txt</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>Reserved for development</td>
<td></td>
</tr>
</tbody>
</table>
ORIGIN

• Well-known, Mandatory. Type=1
• Shows how a prefix was learned.
 – Prefixes are *injected* into BGP
• Length=1
• Value:
 – IGP (=1): Prefix was learned from an IGP.
 – EGP (=2): Prefix was learned from the EGP (BGP).
 – INCOMPLETE (=3): Prefix was learned some other way.
 • Static routes/directly connected networks.
AS_PATH

- ASNs through which the announcement for these prefixes has passed.
- First ASN in the AS_PATH: Origin AS.
- Each AS appends its own ASN before passing on the update.

12.224.128.0/19
AS_PATH Cont’d

• Well-known, Mandatory. Type=2
• Encoded as sequence of AS_PATH segments.
• Each segment is encoded as:
 – Path Segment Type:
 • AS_SET (1): unordered set of ASNs.
 • AS_SEQUENCE (2): ordered set of ASNs.
 – Path Segment Length: 1 octet, #of ASNs in segment.
 – Path Segment Value: 2*PSL octets, list of ASNs.
• New ASNs are actually prepended in the packet.
• If leading segment is AS_SET, a new AS_SEQUENCE is prepended with the ASN as its sole member.
• If leading segment is AS_SEQUENCE, the ASN is just prepended to the sequence.
AS_PATH Cont’d

- Most AS_PATHs are encoded as a single AS_SEQUENCE.
- If a router needs to aggregate, it has to use AS_SET.
- Not common, since most routers aggregate prefixes from their own AS.
• IP address of the node that would get packets closer to the advertised destination.
 – Address of the BGP speaker sending the UPDATE.
NEXT_HOP cont’d

- Well-known, Mandatory. Type=3
- Encoded as the 4-octet address right after the Type Code.
- IP address of the node that would get packets closer to the advertised destination.
 - Address of the BGP speaker sending the UPDATE.
- Exception: A (BGP speaker) sends X (BGP speaker) an UPDATE indicating B (10.3.2.66 interface) (not a BGP speaker) is the router for 12.4.48.0/20.

![Diagram]

12.4.48.0/20

A

X

B

10.3.2.66
MULTI_EXIT_DISCRIMINATOR (MED)

- AS2 includes MED to the updates it sends to AS1.
- AS3 and AS4 are advertised over both links, of course.
- AS1 can now make a better choice about sending packets to AS3 and AS4.
MED Cont’d

• One AS sets MED, but another uses it.
 – MED only used in Customer/Provider relationships (why?).
• Peers usually ignore received MEDs (why?).

• Optional, Non-transitive (why?). Type=4
• Length is always 4, encoding is unsigned integer.

• MED is usually the IGP metric for the advertised prefix.
• MED comparison only makes sense when received from the same AS.
MED Cont’d

- MED can be (ab)used to get one ISP to carry more traffic.
- Traffic from AS3 to AS4 goes to closest link.
- Traffic from AS4 to AS3 obeys MED.
• How does AS5 decide how to send traffic to prefix a?
• MED doesn’t help here.
 – Only one link between AS pairs.
 – AS5 may want to set its own policy about this.
• AS5 uses the LOCAL_PREF attribute on routes it receives.
• LOCAL_PREF is the first attribute used in route selection.
LOCAL_PREF Cont’d

- LOCAL_PREF is computed locally when route received from E-BGP, IGP, or statically assigned.
 - Part of the interface configuration.
 - Stored in the Adj-RIB-In.
- LOCAL_PREF is carried in I-BGP.
 - Don’t worry about this right now!

- Well-known, Discretionary. Type=5
- Length is always 4.
- Encoding is unsigned integer.
Route Aggregation

- AS2 and AS3 can be aggregated into 12.2.48.0/21.
- AS8’s space covers that of AS2, AS3, and AS5.
- What should AS8 advertise upstream?

Diagram:
- AS2: 12.2.48.0/22
- AS3: 12.2.52.0/22
- AS5: 12.2.56.0/21
- AS8: 12.2.0.0/18
Route Aggregation, Cont’d

• AS8 could advertise:
 – Nothing, or some subset of the routes (subj. to policy).
 – All four routes.
 – Advertise just its own (less-specific) route.
 • 12.2.0.0/18 (AS8)
 – De-aggregate its own prefix and advertise more-specifics:
 • 12.2.0.0/19 (AS8)
 • 12.2.32.0/20 (AS8)
 • 12.2.48.0/22 (AS2, AS3, AS8)
 • 12.2.52.0/22 (AS3, AS8)
 • 12.2.56.0/21 (AS5, AS8)

• Aggregation saves space but destroys information.
ATOMIC_AGREGATE & AGGREGATOR

• If a BGP speaker aggregates routes.
 – AS_PATH information is lost.
• Following routers must be alerted.
 – So they don’t de-aggregate the advertised prefix.
• The ATOMIC_AGREGATE attribute provides that feature.
 – Well-known, Discretionary. Type=6.
 – Zero length (just a flag).
 – Must remain attached.
• AGGREGATOR attribute:
 – Indicates which AS and router performed the aggregation.
 – Optional, transitive. Type=7.
 – Length is always 6.
 – 2-byte ASN, 4-byte IP address of aggregator.
COMMUNITY

• Specified in RFC 1997.
• Encodes arbitrary properties.
 – E.g., all of customer’s routes get a specific COMMUNITY.
• Much of the policy is specified using communities.

• Optional, Transitive. Type=8
• Four bytes: (e.g., 7018:100)
 – 2 bytes ASN (by convention).
 – 2 bytes administratively defined (no predefined meaning).

• We’ll talk about this in the next lecture.
Learning External Prefixes

- So far, BGP has been presented as a pure EGP.
 - A protocol that runs between ASs.

- How do A, C and D learn about AS2’s routes?
 - Ditto for Y, Z, T about AS1’s routes?

- I.E., how are prefixes learned by an ASBR distributed inside the AS?
Learning External Prefixes, cont’d

• Inject into the IGP (using AS-External LSAs).
• Small networks can do this.
 – Default route + a few external routes.
• Does not work for large ISPs.
 – They carry a full routing table (100K-400K routes!).
• Would lose policy information.
 – No way to carry attributes.
• IGPs don’t scale well.
 – Computational complexity.
 – Memory requirements.
 – Additional traffic.
 • Fragmented LSAs.
• Clearly need a different way!
E-BGP and I-BGP

- The solution is called *Internal-BGP (I-BGP)*.
 - As opposed to *External-BGP (E-BGP)*.
- E-BGP is used between ASs.
- I-BGP is used **within** an AS.
 - Is used to distribute routes learned with E-BGP.
- E-BGP and I-BGP are the same protocol.
 - Same messages, attributes, state machine, etc.
- But: different rules about route redistribution:

<table>
<thead>
<tr>
<th>Learned from</th>
<th>Redistribute to</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-BGP</td>
<td>I-BGP</td>
</tr>
<tr>
<td>I-BGP</td>
<td>no</td>
</tr>
<tr>
<td>E-BGP</td>
<td>yes</td>
</tr>
</tbody>
</table>
I-BGP Route Redistribution

• How does D learn routes acquired by B?
 – Since A can’t redistribute routes learned over I-BGP?
• If D also had an external connection, how would it redistribute routes learned from other ASs?
I-BGP Route Redistribution, cont’d

- Remember: BGP is a **routed** protocol.
- Routes between routers already exist.
 - Carried by the IGP.
- I-BGP sessions can be formed between non-adjacent routers.
- I-BGP sessions must form a full mesh:
I-BGP, cont’d

- Full mesh.
- Independent of actual links between (internal) routers.
- TCP src/dst of I-BGP session must be a loopback address.
 - Routing to the router must be independent of interfaces going up/down.
- Full mesh is necessary to prevent loops.
 - AS_PATH is used to detect loops in E-BGP.
 - ASN appended to AS_PATH only when route is advertised to E-BGP peer.
- I-BGP is **NOT** an IGP.
 - Nor can be used as one.
NEXT_HOP and the IGP

If we are not using I-BGP.

K’s Forwarding Table
135.207.0.0/16 64.127.35.65

L’s Forwarding Table
10.254.2.9/32 10.254.2.3
64.127.35.65/32 10.254.2.9
135.207.0.0/16 10.254.2.9

dst:135.207.24.19

ASBR LSA
AS External LSA
AS External LSA
NEXT_HOP and the IGP

(If we are not using I-BGP).

K’s Forwarding Table
- 135.207.0.0/16
- 64.127.35.65

L’s Forwarding Table
- 10.254.2.9/32
- 10.254.2.3
- 64.127.35.65/32
- 10.254.2.3
- 135.207.0.0/16
- 10.254.2.3
NEXT_HOP is rewritten to the loopback address.
NEXT_HOP and I-BGP

NEXT_HOP is rewritten to the loopback address.