Announcements

Lectures 1-12 are available.
Have you been working on your project proposal?

Still looking for a TA.
The old days

- Original Arpanet.
 - Single routing domain (GGP, then SPF).
 - Every gateway (router) knew all destinations.
 - Not all that many destinations back then!
- RFC827:
 - Scaling issues identified.
 - High algorithm overhead (given the hardware).
 - Stability.
 - Software engineering issues identified.
 - Different implementations.
 - Different default parameters.
 - Administrative issues.
 - Multiple network administrators.
RFC827: EGP

- Replace single routing domain with...
- Multiple interconnected autonomous routing domains.
 - Called “Autonomous Systems” (AS).
- Each AS managed independently.
- Identified by a 16 bit number (ASN).
 - ASN1: BBN, ASN14: Columbia, ...
 - 64512 – 65535 (FC00-FFFF) are private.
- ASes run IGPs for their internal routing.
- ASes communicate using an EGP (of which “EGP” is the first one).
- IGPs are concerned with optimizing paths.
- EGPs are concerned with adhering to policy.
 - Different metrics make optimization an ill-defined problem.
Exterior Gateway Protocol

- RFC 827, 888, 904.

- IP Protocol 8

- **Neighbors** (or **peers**): routers exchanging EGP messages.
 - **Interior neighbors**: in the same AS.
 - **Exterior neighbors**: in different ASes.

- All EGP routers accept messages about other ASes.
- **Stub gateways** send messages only about their own AS.
- **Core gateways** send messages about all ASes.
EGP topology

- One Core AS to which Stub ASes connect.
- Avoids loops.
EGP Neighbor Acquisition/Reachability

- Neighbor addresses manually configured.
- There is an active and a passive neighbor.
- *Neighbor Acquisition Request* unicast to neighbor.
 - Hello interval and Poll interval specified.
- *Neighbor Acquisition Confirm* and *Refuse*.
- *Neighbor Cease / Neighbor Cease Ack*.
- Relationship maintained with periodic *Hello/I-Heard-You* messages.

- Nothing surprising here!
EGP Network Reachability Protocol

- One neighbor sends a *Poll* message
 - Contains a sequence number.
- The other responds with an *Update* message.
 - Echoes the s/n.
 - Includes list of reachable networks.
- Hello/IHU messages contain the same s/n until an update is received.
 - S/N is then incremented.
- Unsolicited updates are an option.
- Notion of indirect (proxy) updates.
 - Route server.
- Details are not important.
Limitations of EGP

• Inability to detect routing loops.
 – Metrics don’t really mean much.
 – Count-to-infinity too slow.
• Must be engineered loop-free.
• Policy was kludged when NSFNET dictated AUPs.
• Little interaction with IGP to pick best routes.
• Very slow to advertise topology changes.
• Classful.

• Abandoned in favor of BGP(-1, -2, -3, -4).
BGP-4 Overview

• RFC1771.
• BGP runs over TCP (port 179).
• BGP happens between exactly two nodes.
 – BGP Session between BGP Peers.
 • BGP Speakers.
 – A router can have multiple sessions (with multiple peers).
• Maintains the concept of Autonomous System.
• Allows arbitrary AS connectivity.
 – Transit ASes.
 – Non-transit ASes.
 – No such thing as “backbone”.
• Objective: find optimal AS paths satisfying policy constraints.
BGP-4 Overview, cont’d

• In a nutshell:
 – Establish connection with peer.
 – Exchange all routes.
 – While link stays up
 • Exchange incremental updates.
• Routes are not refreshed.
 – A route is considered valid until it is changed or withdrawn.
 – Or until the BGP session is terminated.
BGP-4 Overview, cont’d

• Advertisements are about reachability.
 – A advertises to B a path for N.
 – B is assured that A uses that path to reach N.
• Path-Vector:
 – Almost like DV, except complete paths are advertised.
 • Loops are prevented this way.
• Attributes:
 – That’s what makes BGP so flexible and extensible …
 – and prone to misconfigurations.
 – Next hops, various metrics, path, …
 – Lots of new attributes defined since RFC1771.
Bringing up BGP

- **BGP Peers**: endpoints of a **BGP Session**.
- BGP Peers are configured.
 - No automatic discovery.
- Start at **Idle** state.
- Attempt TCP connection: **Connect** state.
- While establishing TCP connection: **Active** state.

- Now BGP messages can be sent.
 - While TCP connection is up.
BGP Message Common Header

<table>
<thead>
<tr>
<th>Marker: All-1s, or Security Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (incl. Marker)</td>
</tr>
</tbody>
</table>

- Type is one of:
 - OPEN (1)
 - UPDATE (2)
 - NOTIFICATION (3)
 - KEEPALIVE (4)
BGP OPEN

- BGP speakers identify each other.
 - And verify that they are who they are supposed to be.
- Verify they speak the same version of BGP.
- Inform each other of their ID.
- Exchange/negotiate optional parameters.

<table>
<thead>
<tr>
<th>Version</th>
<th>My ASN</th>
<th>Hold Time</th>
<th>BGP Identifier</th>
<th>Opt Parm Len</th>
<th>Optional Parameters…</th>
</tr>
</thead>
</table>
BGP UPDATE

<table>
<thead>
<tr>
<th>Withdrawn Routes Len</th>
<th>Withdrawn Routes</th>
<th>Total Attributes Len</th>
<th>Path Attributes</th>
<th>Network Layer Reachability Information</th>
</tr>
</thead>
</table>
Withdrawn Routes

<table>
<thead>
<tr>
<th>Prefix Len</th>
<th>Prefix Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>Prefix</td>
</tr>
</tbody>
</table>

- List of IP prefixes to withdraw.
- Length is the prefix length.
- Prefix is padded to a multiple of 8 bits.
 - Pad bits ignored.
Path Attributes

- **O**: Optional/Well Known
- **T**: Transitive/Nontransitive (passed on to peers)
- **P**: Partial: only some routers in the path understand an Optional and Transitive attribute.
 - If O=0 and T=0 then P must be 0.
- **L**: Extended Length: L=1 means length field is 2 bytes.

- Attributes apply to all advertised prefixes in the UPDATE message.
Network Layer Reachability Information

<table>
<thead>
<tr>
<th>Prefix Len</th>
<th>Prefix Len</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- List of advertised prefixes.
- All attributes apply to all prefixes.
- Prefixes with different attributes are advertised in separate UPDATE messages.
BGP NOTIFICATION

<table>
<thead>
<tr>
<th>Error Code</th>
<th>E.Subcode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Report errors about:
 - Format of received message.
 - Unexpected state.
 - Timers expiring.
- The TCP connection is closed right after the NOTIFICATION.
 - All notifications are fatal!
BGP KEEPALIVE

• Sent if there have been no updates in the last HoldTimer seconds.
• Syntactically, just a BGP header with Type=4
(About Keepalives)

• Some TCP implementations have the notion of a keepalive:
 – Packet sent periodically to probe the connection.
• What it does keep alive is the underlying link IF the underlying link depends on continuous traffic to stay up (e.g., dialup).

• TCP state is kept only at the endpoints.
 – Intermediate hops do not need to be refreshed.
• If intermediate links go away temporarily, TCP will keep retransmitting until they come back up.
• In most cases, tearing down a link when no other data traffic would have flowed anyway is wasteful.

• Hence the term “makedeads”.
Keepalive

- In BGP, we DO want a Makedead!
- A failed link indicates that routing should change.
 - Since BGP messages are exchanged over the same link that all other traffic would be routed.
 - (There is an exception to this, don’t worry about it yet.)
- Detects if the link has failed, and tears the session down.
- A torn-down BGP session causes routes to be withdrawn
 - This is the desired behavior.
Conceptual Model of Operation

• BGP is about advertising prefixes.
 – Some prefixes are learned from BGP neighbors.
 – Some more prefixes are also learned from the IGP.
 – Some of these prefixes are advertised to neighbors.
• RIB: Routing Information Base.
• Each router keeps:
 – One Adj-RIB-In for each peer.
 • Stores prefixes learned from each peer.
 – Prefixes from all the Adj-RIB-Ins are selected for use.
 – Stored in the Loc-RIB.
 • One per router.
 – One Adj-RIB-Out for each peer.
 • Stores prefixes to be advertised to each peer.