

The Amaze Language

Project Manager Rouault Francoeur
Language Guru Daniel Mercado
System Architect Jonathan Bourdett
System Integrator Orlando Pineda
Tester and Validator Jose Contreras

Motivation
● Interested in mazes and designing them.
● Wanted a way to design mazes for GUIs

without the complexity of Java classes.
● Wanted to design an easy to learn, but hard

to master language.

What is Amaze?
● Simple
● Intuitive
● Educational
● Architecture Neutral
● Detailed
● Creative
● Imperative and Domain Specific

Programming Language used for designing
mazes

Project Management
● Each member assigned responsibilities

according to their role
● Members allowed flexibility to get work done

efficiently
● Set long term goals and short term goals

Syntactic Constructs

1. Points
2. Paths
3. Structures
4. Functions
5. Boards
6. Conditionals / Iteration
7. Main Declaration

1. Points
point x : 1,1;

● Stores a two-dimensional location on the

board. Location must be an integer

2. Path
path y : x, down, 1;

● Creates a line or "path" in the maze from a

start location in a specified direction for a
specified length.

● Directions accepted are "up", "down", "left",

"right".

3. Structures
structure line1 {

point x : 1, 1;
path y : x, right, 10;

}
● Reusable blocks of code that can set paths

in multiple boards to avoid redundancy

4. Functions
func int foo (int x) {

 x = x + 7;
return x; }

● Takes an integer, increments it by 7 and
returns it to the function call.

print "Hello World";
● Prints to the command line "Hello World";

5. Board
board stage1 {

point x: 1, foo(8);
path y: x, right, 10;
set(line1);

}
● Create a frame where the maze is drawn.
● Accepts points and path declaration.
● Structures can be added using set().
● Functions can also be called in a board

6. Conditionals/ Iteration
int x = 1;
while(x < 3) {

if (x == 1) { print "One"'; }
else {print "Not One"; }

}
● if/else and while statements are made like in

C except brackets are mandatory.
● else if statements do not exist in our

language.

7. Main Declaration
main {

draw(stage1);
}

● Although boards can be defined they must
be drawn in the main function.

● Multiple boards can be drawn at the same
time.

Sample Program
func int frank(int x){

x = x + 7;
return x;

}
structure megaman{
 point e: 0,0;
 point f:50,0;

 path g: e,right,50;
 path h: f,down,50;

Sample Program
(Continued)

 int bob = 0;
 int joe = frank(bob);

 if(true){
 while(bob < joe) {

Sample Program
(Continued)

if(bob == 3){
 print("Swagneto");
 }
 else{
 point fred: bob, 9;
 path batman: fred,down,13;
 }
 bob = bob + 1;
 }
 }
}

Sample Program
(Continued)

board d {
 size: 100,100;
 start:0,0;
 end:50,50;

set(megaman);

}

main {

draw (d);
}

Compiling and Running
Amaze

● /src folder contains the source files of the
Amaze compiler

● run amazec.sh with an .amz file as an input
● ./amazec.sh input_file.amz
● a Java executable output to the src folder
● execute with Java
● java Out

Sample Programs

Demo1
Maze showing using a structure type

Demo 2

"Maze" showing a print statement, function,
iteration, conditional statement, and structure
type

Translator Architecture

Translator Architecture
(More Specific)

Software Development
Environment

Test Plan

board board1
{

size: 19, 19;
start: 1, 0;
end: 18, 17;
int x = 0;
while(x)
{
 x=10;
}

}
main
{

draw(board1);
}

“Invalid type in while loop.
Expected a boolean but
received a(n) int”

Test Plan

board board1{

size : 11, 11;
start : 0,0;
end : 10, 10;
point p : 0,0;
path myPath : p, down,

10;
point p2: 0,10;

path myPath2:p2,right,10;

}

main{

draw(board1);
}

“Invalid type in while loop.
Expected a boolean but
received a(n) int”

Test Plan

Lessons Learned

● Start Early
● Set Milestones
● Communicate

Effectively
● Figure Out How to

Work in Parallel

● Learn the capabilities
of your team mates

● Communicate with
other peers

● Don’t be afraid to
use new tools or
reject old tools!

What Worked Well
● Meeting Every Week
● Team Synergy
● Comfortable Atmosphere
● Learning the Tools

○ ANTLR
○ git

Why use Amaze language?
● Fun
● Simple
● Educational
● Exercise your Creativity
● Intuitive
● Easy to Demonstrate

Hopes for the future
● Expand idea to a language made to design

interactive maze games
● game design language

THE END

Questions?

