

PLab Final Report

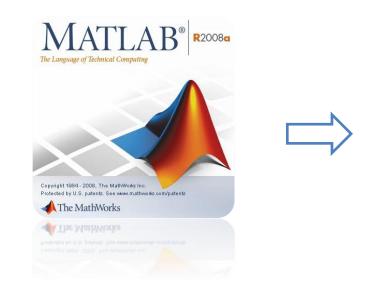
Team 5

Project Manager: System Integrator: System Tester:

Meng Yan @ my2316 Language Guru: Qi Jiang @ qj2113 System Architect: Yi Zhang @ yz2360 Tianju Wang @ tw2326 Wei An @ wa2166

- PLab Language is a programming language which provides a simple and powerful way to simulate physics experiments of Newton's Mechanics *for education purpose*.
- Our goal is to make physics experiments *easy to design, implement and understand*.
- The Expected users of PLab are *teachers of physics* and physic fans.

Project Timeline (Meng Yan)


Item	Task	Start Date	End Date	Status
1	Language Design			
1.1	Brain-storming : Language Design	2011-2-7	2011-2-7	100%
1.2	Set up development environment	2011-2-10	2011-2-10	100%
1.3	White paper	2011-2-13	2011-2-20	100%
1.4	Setting language semantics	2011-2-27	2011-3-7	100%
1.5	Tutorial and Reference Manual	2011-3-10	2011-3-17	100%
2	Translator Implementation			
2.1	Scanner	2011-3-24	2011-4-1	100%
2.2	Parser	2011-3-26	2011-4-1	100%
2.3	System Testing Phase 1	2011-4-1	2011-4-7	100%
3	IDE and Bug fixing			
3.1	IDE Design	2011-4-8	2011-4-15	100%
3.2	System Testing Phase 2	2011-4-15	2011-5-1	100%
4	Final Report and Demo			
4.1	Modify white paper, tutorial and reference manual	2011-4-3	2011-4-25	100%
4.2	Final report	2011-4-25	2011-5-2	100%
4.3	Demo preparation	2011-5-4	2011-5-8	100%

Functionality: Simulation Domain: Education *Method*: Object-Oriented *Structure*: Section & Element

Subroutine: Branch & Loop Embedded Script

TEST, TEST, TEST!!!

A Typical PLab Program (Qi Jiang)


```
Environment PS is
Physical_Space {
Gravity = 9.81;
}
```

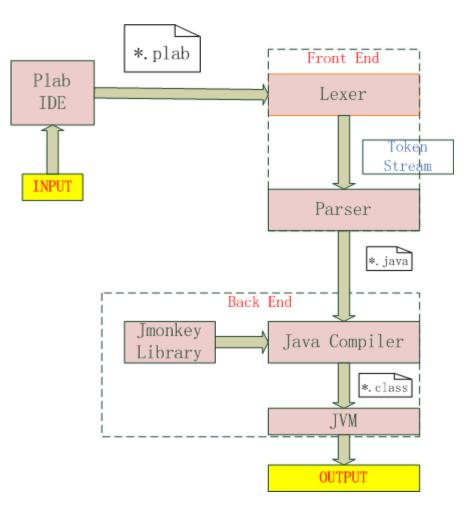
```
Environment Cam is Camera {
CamCenter = [0, 30, 30];
CamDirection = [0, 1, 0];
CamMoveSpeed = 15;
}
```

```
Environment F is Floor {
Length =20;
Width = 20;
Texture = POND;
Restitution = 1;
}
```

```
Object S1 is Sphere {
Radius = 0.5;
Center = [-10, 1.5, 0];
Color = PINK;
Mass = 10;
}
```

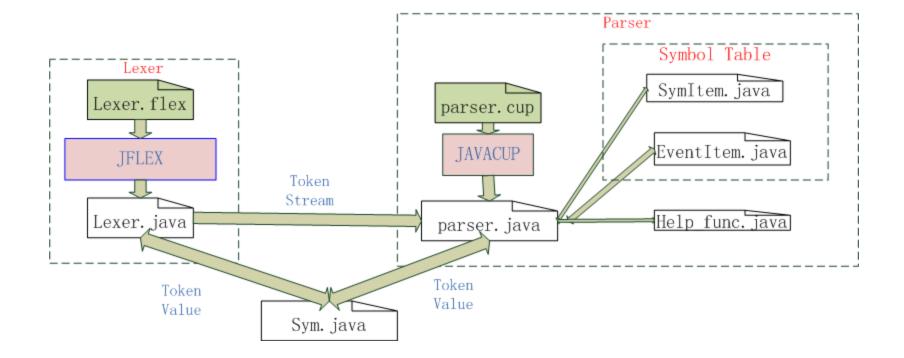
```
Object Item is Box {
Extent = [6, 0.01, 0.5];
Center = [0, 2, 0];
Rotation = [0, 0, 30];
Texture = WALL;
Mass = 0;
}
```

```
Event C is Collision {
CollisionA = Floor;
CollisionB = S1;
Action = M;
}
```

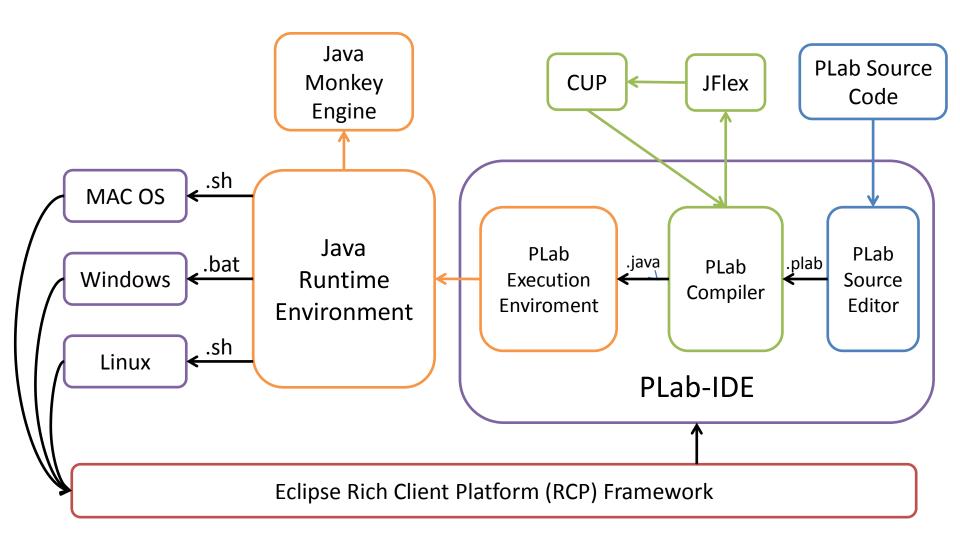

```
Event M is Modification {

Item.Color = RANDOMCOLOR;

S1.Velocity = [0, 0, 5];
```


Translator Architecture (Yi Zhang)

Translator Architecture (Yi Zhang)



Development Language	Java	JVM Version: 1.6 Update 22
Develop Environment	Eclipse for RCP Developers	Version: Helios Service Release 2
Version Control Tool	Subversion	Service Provided by Google Code
Document Maintains	Google Doc	Word and Spreadsheet
Operating System	Mac OS	10.6. (Snow Leopard)
Operating System	Windows 7	Home Edition/Ultimate

- Cross Platform
- Easy Deployment
- Team Cooperation

- Java Monkey Engine
- JFlex/CUP Parser
- Eclipse RCP

PLab Test Plan (Wei An)

Section	File Name	Element/Attribute Type	Usage
	TestEnvironment	Physical_Space, Camera, Floor	Test if the environment section works
Environment	TestEnvironment_Light	Light	Test the environment with and without shadow
	TestObject_Shape	Sphere, Box, Cylinder, Dome	Constructing different types of objects
Object	TestObject_Motion	Velocity, Center	Various linear velocities
-	TestObject_AngularMotion	Angular_Velocity	Various angular velocities
-	TestGlobalAttr_Texture	Texture	Testing Global attribute Texture in Environment and Object section
Global	TestGlobalAttr_Color	Color	Testing Global attribute Color in Environment and Object section
	TestEvent_Force	Force	Force acting on the Center and other positions of an Object
	TestEvent_Trigger	Trigger	Velocity, Angular_Velocity, and Time in Expression
_	TestEvent_Trigger2	Trigger	Center and x, y, z of a vector
Event	TestEvent_Modification	Modification	Modification on Center, Rotation, Velocity, Angular_Velocity, Color, and Texture
	TestEvent_Collision1	Collison	Action is Force or Modification
	TestEvent_Collision2	Collison	Collision time is used in Trigger
	TestScript_\$and\$\$	\$ and \$\$	Inserting lines of scrip or tokens in PLab
Script	TestScript_if	if	Usage of if, then, else, elseif, endif
	TestScript_for	for	Usage of for, do, endfor

PLab Test Plan (Wei An)

Physics Section	File Name	Description
Gravity	TestPhysics_Freefall	The freefall motion of objects near earth
Newton's Second Law	TestPhysics_Projectile	The motion of projectiles with the same initial speed and different projectile angle
Friction	TestPhysics_Friction	Static friction, kinetic friction, and rolling resistance
Collision	TestPhysics_Collision	Collision with different coefficient of restitution. (Perfect inelastic collision, inelastic collision, and elastic collision)
Uniform Circular Motion	TestPhysics_Orbit	Uniform circular motion with different trajectory.
Newton's Law of Universal Gravitation	TestPhysics_EscapeV	Escape velocity (second cosmic velocity) and circular orbit velocity (first cosmic velocity).

Demo: Collision (Wei An)

 $C_{R2} = C_{R1} = 0.5$ $C_{R4} = C_{R3} = 1$ $C_{R6} = C_{R5} = 0.5$

3

2

 $v_{01} = v_{03} = v_{05} = v_0$

у

We designed this experiment for elastic and inelastic collisions. And give different coefficients of restitution to see the phenomena of the collisions.

> $m_1 = m_2 = m_3 =$ $m_4 = m_5 = m_6$

For perfect inelastic collision: $m_a u_a + m_b u_b = (m_a + m_b) v$

$$v = \frac{m_a u_a + m_b u_b}{m_a + m_b}$$

For perfect elastic collision:

Х

$$\begin{cases} m_{a}u_{a} + m_{b}u_{b} = m_{a}v_{a} + m_{b}v_{b} \\ \frac{m_{a}u_{a}^{2}}{2} + \frac{m_{b}u_{b}^{2}}{2} = \frac{m_{a}v_{a}^{2}}{2} + \frac{m_{b}v_{b}^{2}}{2} \\ \\ v_{a} = \frac{(m_{a} - m_{b})u_{a} + 2m_{b}u_{b}}{m_{a} + m_{b}} \\ \\ v_{b} = \frac{(m_{b} - m_{a})u_{b} + 2m_{a}u_{a}}{m_{a} + m_{b}} \end{cases}$$

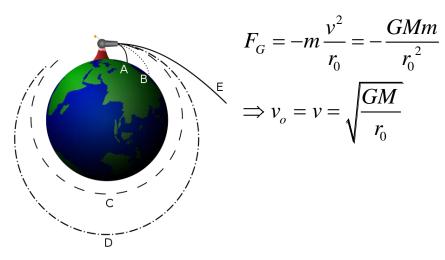
$$v_{a} = \frac{m_{a}u_{a} + m_{b}u_{b} + m_{b}C_{R}(u_{b} - u_{a})}{m_{a} + m_{b}}$$
$$v_{b} = \frac{m_{a}u_{a} + m_{b}u_{b} + m_{a}C_{R}(u_{a} - u_{b})}{m_{a} + m_{b}}$$

Demo: Escape Velocity (Wei An)

We test the phenomena of escape velocity and orbit velocity in the test cases. Let GM=1000, m=1, $r_0=10$. We give the initial values of $|v_o|$ from 7 to 15

From Newton's Gravitational Law,

$$F_{G} = ma = m\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{GMm}{r^{2}}$$


$$a = \frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{GM}{r^{2}} = \frac{\mathrm{d}v}{\mathrm{d}r} \cdot \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}r} \cdot v$$
So
$$v \cdot \mathrm{d}v = -\frac{GM}{r^{2}} \mathrm{d}r$$

$$\Rightarrow \int_{v_{0}}^{+\infty} v \cdot \mathrm{d}v = -\int_{r_{0}}^{+\infty} \frac{GM}{r^{2}} \mathrm{d}r$$

Solve this equation, we get

$$-\frac{1}{2}v_0^2 = -\frac{GM}{r_0}$$
$$\implies v_e = v_0 = \sqrt{\frac{2GM}{r_0}}$$

We derive the circular orbit velocity

